

LEDBAT Performance in Sub-packet Regimes

Ioannis Komnios, Arjuna Sathiaseelan and Jon Crowcroft

Obergurgl, 04 April 2014

Global Access to the Internet for All

Wireless Community Networks

Sub-packet Regime

BW fair-share per flow < 1 packet per RTT

Low Extra Delay Background Transport

Scenario Characteristics

2 - 96 users	UL capacity: 600 Kbps	DL capacity: 1.2 Mbps
RTT: 450 ms	Buffer size: BWxDelay	Packet size: 1500 Bytes
$\pmb{lpha}:1$	$\boldsymbol{\xi}:5$	Target: 100 ms

Link Efficiency

Fairness Index

Packet Loss Probability

When having only LEDBAT flows

Parallel LEDBAT and TCP flows

LEDBAT flows

Recommendations

Base delay estimation methods

Shared bottleneck detection

Conservative reaction to timeouts

Prioritisation of retransmitted packets

Admission control

Thank you!

Research funded by

 The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013, FP7-REGPOT-2010-1, SP4 Capacities, Coordination and Support Actions) under Grant Agreement n° 264226 (Project title: Space Internetworking Center - SPICE).

LEDBAT

- Queuing delay = Current delay Base delay
- * $\Delta(t) = Queuing delay Target$
- If no loss, $\operatorname{cwnd}(t+1) = \operatorname{cwnd}(t) + \alpha(\operatorname{Target} - \Delta(t)) / (\operatorname{Target} x \operatorname{cwnd}(t))$
- If loss,
 cwnd(t+1) = cwnd(t)/2

fLEDBAT

- If $\Delta(t) \le 0$, $\operatorname{cwnd}(t+1) = \operatorname{cwnd}(t) + \alpha/\operatorname{cwnd}(t)$
- If $\Delta(t) > 0$, $\operatorname{cwnd}(t+1) = \operatorname{cwnd}(t) + \alpha / \operatorname{cwnd}(t) - \zeta \times \Delta(t) / \operatorname{Target}$
- If loss,
 cwnd(t+1) = cwnd(t)/2

Queuing Delay Index

