

1

Head-to-Tail: Managing Network Load through Random Delay Increase

Stylianos Dimitriou, Vassilis Tsaoussidis
Electrical and Computer Engineering Department, Democritus University of Greece

{sdimitr, vtsaousi}@ee.duth.gr

Abstract

Window-based congestion control is typically

based on exhausting bandwidth capacity, which
occasionally leads to transient congestion. Moreover,
flow synchronization may deteriorate conditions
further, leading to persistent or more severe
congestion, which is experienced by flows through
increasing queuing delays and packet retransmission.
Head-to-Tail is a new approach to queue scheduling
that aspires to alleviate this problem. When
conditions at the router’s buffer indicate high risk for
congestion, Head-to-Tail delays packets intentionally
to fabricate the senders’ impression about the
network load. This implicit signal to reduce the
transmission rate allows for a responsive behavior
prior to congestion. In this paper, we evaluated
Head-to-Tail with TCP Vegas and compared it with
RED and other TCP variants. The initial results
indicate that congestion events and retransmissions
can be significantly eliminated.

1. Introduction

The Transmission Control Protocol has powerful
mechanisms for detecting congestion and for
recovering after congestion happens. Recovery
typically depends on the characteristics of congestion
itself: severe congestion, which is detected by
timeout triggers a radical transmission rate decrease,
while transient congestion, which is detected by 3
DACKs, triggers a milder reaction. Several TCP
versions employ also congestion avoidance
mechanisms. Such mechanisms monitor the network
load by measuring the Round Trip Time (RTT) per
window, the inter-packet gap, the buffer occupancy
or a combination of the above. This mechanism of
detecting network conditions allows for a new
mechanism to implicitly report network over-
utilization. That is, increasing the queuing delay of
selected packets intentionally will cause an increase
of the measured load at the corresponding senders,
which could trigger a reduction of the transmission

rate. Clearly, the intentional delay increase seems to
collaborate well with the transport protocols that do
employ measurement-based congestion avoidance.
Additionally, the mechanism has the potential to
work well also with congestion control instead of
avoidance, since the RTT measurements are central
to all protocol variations. For example, in standard
TCP Reno the RTT sets the timeout values, which in
turn, determines the scheduling of retransmitted
packets. Furthermore, the RTT determines the pace
of received acks, which in turn determine the pace of
packet transmission.

The proposal to increase delay intentionally is
associated with two main issues.

1. How much and in what occasions shall we
increase packet delay in the queue? The increase
should be significant enough in order to be measured;
and small enough to avoid a spurious timeout at the
sender. If the granularity of measurement is not
appropriate, the increase will go wasted.

2. Delay increase cannot apply to all queued
packets – an overflow in that case cannot be avoided.
Since the mechanism will apply to selected packets
only, a set of packets will be favored at the expense
of others. What is the impact of such policy on
fairness?

Departing from the two aforementioned issues, we
investigate the desired properties of a Rearrange
Probability Function. In section 2 we provide the
necessary background and discuss the related work.
In section 3 we detail the Head-to-Tail algorithm and
in section 4 we determine the experimental scenarios.
In section 5 we evaluate the performance of various
Rearrange Probability Functions using TCP Vegas as
a representative measurement-based protocol. We
extend our evaluation further in section 6, with more
TCP versions and Active Queue Management
schemes. In section 7 we conclude with some main
remarks.

2

2. Background and Related Work

There are two main policies at the router that
impact flow performance: (i) the dropping policy and
(ii) the scheduling policy. Scheduling typically
manages priorities of packets. Dropping is focused on
penalizing high-bandwidth-consuming flows. In [3]
Floyd and Fall identify high-bandwidth flows by
using RED’s [5] drop-history. The RED-PM
(Preferential Dropping) algorithm [8] uses per-flow
preferential dropping mechanisms. Per-flow
preferential dropping with FIFO scheduling also use
Core-Stateless Fair Queuing (CSFQ) [13] and Flow
Random Early Detection (FRED) [7]. CSFQ marks
packets with an estimate of their current sending rate.
The router uses this information in conjunction with
the flow’s fair share estimation in order to decide
whether a packet needs to be dropped. FRED
maintains a state only for the flows which have
packets in the queue. More packets buffered equals to
increased dropping probability.

The CHOKe mechanism [12] matches every
incoming packet against a random packet in the
queue. If they belong to the same flow, both packets
are dropped. Otherwise, the incoming packet is
admitted with a certain probability. The Stochastic
Fair Blue (SFB) [2] uses multiple levels of hashing in
order to identify high-bandwidth flows and ERUF
[11] uses source quench to have undeliverable
packets dropped at the edge routers. On the other
hand, SRED [10] caches the recent flows in order to
determine the high-bandwidth flows.

Although HtT cannot be classified as a clear
dropping or scheduling scheme, it has a common
property with the aforementioned mechanisms, which
is to implicitly indicate congestion status. In this
context, HtT can be viewed as a new mechanism for
Active Queue Management.

Prior to analyzing HtT, we highlight some major

differences of various TCP variations for controlling
congestion. We classify TCP into two major
categories: (i) the AIMD-based standard versions
such as Reno [6], New Reno [4] and SACK [9] and
(ii) the measurement-based approaches such as Vegas
[1], Real [15] and Westwood [14]. The first category
mainly assumes that network is a black box. Each
packet loss triggers homogeneous responses from all
senders, which adjust their transmission windows
multiplicatively at a fixed rate β. The increase rate is
pre-determined by parameter α. Most measurement-
based protocols, instead, complement the AIMD-
based control with adjustments of the transmission
window that correspond to detected network
conditions. Such conditions are detected by

measuring the RTT, the inter-packet gap, the packet
loss rate, etc.

It is important to highlight a main difference in the
design of the two approaches. The first category is
responsive to packet losses, while the second
category is also responsive to other events as well,
such as, for example, the detected network load. Of
course, the first category is also somewhat responsive
to RTT measurements, since those affect the timeout.
However, a single RTT increase will not trigger in
that case any transmission window reduction but it
will cause a small rate reduction due to further delays
of acks.

3. Head-to-Tail description and
justification

Departing from the aforementioned observation,
we design HtT to cause intentional delays and hence
indicate implicitly to the corresponding senders the
urgency to reduce their rate. The indication causes
clearly different reactions at the senders, depending
on their congestion avoidance and control
mechanism; however, all types of mechanisms are
more or less reactive to the additional delay.

The proposed scheme can work well with standard
scheduling schemes such as FIFO and also with
standard dropping schemes, such as DropTail. After
the arrival of a new packet, the router decides
whether or not to change the existing order
(rearrange) of some packets based on two criteria: (i)
the current queue length and (ii) the selected
Rearrange Probability Function (RPF). Note that the
RPF determines the probability that corresponds to
some particular length of the queue.

When a new packet arrives, the router generates a
pseudo-random number between 0 and 1. If it is
smaller than the probability that corresponds to the
queue’s length, the queue shifts backwards the
position of selected packets. Those packets cannot be
randomly chosen, but instead they have to be selected
in order to maximize the delay impact and increase
the probability of informing the sender. That said,
packets are moved from Head to Tail. However, our
policy is not biased: the time and probability of
selection is associated with the queue length, the
random number generation and the RPF. In this
context, randomness is also associated with the
packets selected and hence our design is not expected
to degrade system fairness. Also note that the
diversity of flows that are implicitly informed about
the network conditions is increased in proportion to
flow contention.

3

By and large, the importance of the Rearrange
Probability Function becomes obvious. RPF depicts
the probability for the rearrange to occur at each
corresponding length of the queue. It may be a
constant function, a pulse, a first grade polynomial,
or it may be composed by more than one functions of
any type (see Figure 1).

Figure 1. Example of a Rearrange

Probability Function

On the x-axis we depict the length of the queue
where 0% is an empty queue and 100% is a full
queue. On the y-axis we depict the rearrange
probability. The maximum probability is 1, meaning
that each time the router reaches this length, it
rearranges some packets. Every position in the queue
has its own probability; however we avoid
rearranging for packets at both empty and full
queues. Empty queues need no supportive
mechanisms while full queues may be handled better
with drops. Hence, our approach intends to mainly
regulate traffic during the normal operational phases
of the queue – not the extreme ones.

4. Determining RPF Shape

Our initial target was to determine an appropriate
RPF using TCP Vegas flows. We made five sets of
simulations with five different types of RPF: constant
functions, pulse functions, two first and two fourth
grade polynomials convex with one peak and two
fourth grade polynomials concave. We can see
indicative forms of the functions in Figure 2.
For the (3), (4) and (5) RPF we chose to have one
peak. This was deemed appropriate but also
convenient since otherwise, we had to search for
twice more peaks and because we decided that
maximum probability should correspond to a single
point. Variables yv, xv, xv1, xv2 by definition take
values from 0 to 1. During the simulations and in
order to control the computational time, we used a
0.1increase step for the above variables. Simulations
were done with ns-2. We used a Dumbbell topology

with two routers, N senders and N receivers, as we
see in Figure 3.

Figure 2. The 5 types of RPF that we
examined during our simulations

0

1

100% qlength

yv

xv

prob (3)

0

prob

qlength

1

100%

yv

xv1 xv2

(2)

0

1

100% qlength

yv

xv

prob (4)

0

1

100% qlength

yv

xv

prob (5)

0

prob

qlength

1

100%

yv

(1)

0

prob

qlength

1

100%

4

Figure 3. The Dumbbell topology used

Every simulation’s duration was 70 seconds.

Every 10 seconds the number of flows changes
taking values from 10 to 500, representing both the
dynamics of contention increase and contention
decrease. The first time we simulated the scenario
without HtT and in the following phase we tried all 5
RPFs with all the possible values for their variables
(step 0.1) by setting the number of packets to
rearrange pv=6. Note that this number itself can be a
subject of research and optimization; however,
presently, we have used a fixed number of packets.

Since a comparative advantage of HtT is the
reduction of packet drops, we mainly focused on
reducing retransmissions even at the same levels of
Goodput, Throughput and System Fairness. Hence,
retransmission overhead was a major performance
evaluation metric.

We also considered very important to show that
the proposed scheme does not harm existing AIMD-
based versions in favor of measurement-based flows.

5. On the Choice of the RPF

In order to examine thoroughly the form of the
RPF we simulated the above scenario for every
possible value of the variables, with step 0.1 (apart
from the first, where we used smaller steps). This
way, we performed a total of about 900 simulations:
30 of them were for the constant RPF, 550 of them
were for the pulse-shaped RPF and for each of the
(3), (4) and (5) RPF we performed 110 simulations.
The results of each RPF are depicted in increasing
order. The y-axis depicts the number of the
retransmitted packets. Without HtT, the number of
RetPacks was 66320. This can be seen on the graphs
with the transparent circle. The black circle in Figure
10 is the point which we choose as the best RPF and
possibly will be used for further implementation and
evaluation of the algorithm. For the third and fourth
RPF, we give diagrams depicting the areas where we
have improvement of the number of Retransmitted
Packets (RetPacks). Since we had three variables for
the second RPF, we couldn’t display a similar
diagram. Area diagrams for the first and last RPF
weren’t necessary as we couldn’t achieve any
amelioration. The blue (light gray) areas indicate the

points where the total number of the retransmitted
packets is reduced.

5.1. Constant and Fourth Grade Concave
RPFs

As we can see in Figures 4 and 5, all the
simulations produced worse results than the original
algorithm. Even when we used 0.001 constant
rearrange probability, packet losses were slightly
greater.

0

20000

40000

60000

80000

100000

120000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

of simulations
R

et
Pa

ck
s

Figure 4. Constant RPF

0
20000

40000
60000
80000
100000
120000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

of simulations

R
et

Pa
ck

s

Figure 5. Fourth Grade concave RPF

The reason for this behavior is that rearranging
packets near the end of the queue, at least doubles
their queuing delay. This raises the total delay of the
packet, exceeding the factor 2·RTT (which equals
usually to the RTO) in fast links, and causes the
sender to consider the packet lost and retransmit it.

We should notice that all the results for the Fourth
Grade concave RPF were almost identical, around
11000 packets. Because of the form of this RPF,
altering the peak point among neighboring points will
not alter the probabilities in different percentages of
the queue length. This leads to the conclusion, that
the value of probability isn’t very important when we
examine the rearrange probabilities for each queue’s
length. Great fluctuations of the results are observed
when probability approaches 0 and departs from 0.

N
rcvrs

100Mb, 8ms

160
pckts

10Mb
1ms

N
sndrs

10Mb
1ms

5

5.2. First Grade and Fourth Grade convex
RPFs

For those two RPFs, 36% and 73% of their peaks
gave lower RetPacks than 66320 packets. What we
can see in Figures 6 and 8 is that the results are being
divided in two clusters, leading to the conclusion that
some values of yv and xv can lead to an extraordinary
number of congestion events and retransmissions.
This calls for self-adaptive systems that make
judgments, based on measurements, in case a specific
Rearrange Probability Function mitigates the
network’s load, or causes unnecessary delays.

0
20000
40000
60000
80000
100000
120000

1 12 23 34 45 56 67 78 89 10
0
11
1

of simulations

R
et

Pa
ck

s

Figure 6. First Grade RPF

0

0.
2

0.
4

0.
6

0.
8 10

0.2

0.4

0.6

0.8

1

xv

yv

Figure 7. Area Graph for First Grade RPF

Low performance of the First Grade RPF renders it
practically useless. Instead, the Fourth Grade convex
RPF had the highest performance among all RPFs
evaluated. In Figure 9, we can see the areas where
Fourth Grade convex RPF succeeds in producing
better results, system-wise. First, it becomes clear,
why someone should avoid rearranging packets near
the head or near the tail of the queue. Second, the red
(dark gray) and blue (light gray) areas are not mixed:
the blue area rests in the middle of the graph and the
red area occupies the top and the bottom of the graph.
Picking a peak is easy, since any point with yv greater
than 0.2 and smaller than 0.8 will work. This means

that traffic regulation appears to be manageable with
certain, well-known guidelines.

0
20000
40000
60000
80000
100000
120000

1 12 23 34 45 56 67 78 89 10
0

11
1

of simulations

R
et

Pa
ck

s

Figure 8. Fourth Grade convex RPF

0

0.
2

0.
4

0.
6

0.
8 10

0.2

0.4

0.6

0.8

1

xv

yv

Figure 9. Area Graph for Fourth Grade

convex RPF

5.3. Pulse RPF

Due to the nature of Pulse RPF, which is
associated with a wide range of values, we cannot
easily display results and proper conclusions.
However, pulses with xv2 equal to 1, generate
congestion and packet losses; again, we exclude
extreme cases of empty and full queue.

By and large, 66% of the simulations of Pulse
RPF were positive, rendering the function
comparable to the Fourth Grade convex RPF and
hence, a good alternative. Because of the fact that
Pulse is the only function that can have zero
probability near the end of the queue, we can choose
this function for calibrating Head-to-Tail further.
Specifically, the point where xv1=0.1, xv2=0.9 and
yv=0.1 and RetPacks=50927, presents over 23%
reduction of retransmitted packets. This point can be
seen on Figure 10 with the black circle. Pulse RPF
has an advantage over Fourth Grade convex RPF
since it does not require complicated calculations for
each probability.

6

0
20000
40000
60000
80000
100000
120000

1 52 10
3

15
4

20
5

25
6

30
7

35
8

40
9

46
0

51
1

of simulations

R
et

Pa
ck

s

Figure 10. Pulse RPF

6. Examining different versions of TCP

Using the same topology as previously, we
simulated Tahoe, Reno, NewReno, Westwood and
Real flows, using RED, Droptail with FIFO, and
Droptail with HtT. The results of these simulations
are depicted in Figure 11.

0
20000
40000
60000
80000
100000
120000

Ta
ho
e

Re
no

Ne
wR
en
o

Ve
ga
s

W
es
tw
oo
d

Re
al

R
et

Pa
ck

s

RED Droptail-FIFO Droptail-HtT

Figure 11. Different TCP versions simulations
with RED, FIFO Droptail and HtT Droptail

HtT does not exhibit, comparatively, a behavior

that harms Reno-like flows, more than RED and
Droptail-FIFO. Instead, it appears clearly as the
algorithm of choice, since in most cases it reduces
further the amount of retransmitted packets. Note that
all other metrics (e.g. goodput, fairness) do not
exhibit any statistically significant difference. We do
not present those figures here due to space
limitations. Also note that, by altering the RPF (or its
parameters), we can adjust the flows behavior
further.

7. Conclusions and Future Work

We have shown that there are alternative ways to
regulate queue traffic, without marking or dropping
packets in the queue. HtT is an algorithm towards
proactive congestion management and allows for
designing sophisticated protocols that detect the

network load. The information passed by HtT is, by
and large, similar for all flows. However, different
types of protocols interpret it differently. Hence, the
impact on different versions of protocols is also
different. Clearly, the granularity of measurements is
also important. In this context, enhanced protocols
and sophistication could promote the proposed
scheme further.

8. References

[1] Brakmo et al, “TCP Vegas: New Techniques for
Congestion Detection and Avoidance”, SIGCOMM 94
[2] W.-C. Feng, K. G. Shin, D. Kandlur, and D. Saha,
“Stochastic Fair Blue: A Queue Management Algorithm for
Enforcing Fairness”, Proceedings of the Twentieth Annual
Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM-01), Volume 3, pp.
1520—1529. Los Alamitos, CA: IEEE Computer Society,
2001
[3] S. Floyd and K. Fall, “Promoting the use of end-to-end
congestion control in the Internet”, IEEE/ACM
Transactions on Networking, 7(4):458-472, 1999
[4] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno
modification to TCP’s fast recovery algorithm”, RFC 3782,
April 2004
[5] S. Floyd and V. Jacobson, “Random Early Detection
Gateways for Congestion Avoidance”, IEEE/ACM
Transactions on Networking, 1(4):397-413, August 1993
[6] V. Jacobson, “Congestion Avoidance and Control”,
SIGCOMM Symposium on Communications Architectures
and Protocols, pages 314–329, 1988
[7] D. Lin and R. Morris “Dynamics of random early
detection”, SIGCOMM ’97, pages 127-137, Cannes,
France, September 1997
[8] R. Mahajan, S. Floyd, and D. Wetherall, “Controlling
high-bandwidth flows at the congested router”, 2001
[9] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow,
“TCP Selective Acknowledgment and Options”, RFC 2018,
IETF, October 1996
[10] T. Ott, T. Lakshman and L. Wong, “SRED: Stabilized
RED”, IEEE Infocom 1999, New York, USA, March 1999
[11] A. Rangarajan and A. Acharya, “ERUF: Early
Regulation of Unresponsive Best-Effort Traffic”
Proceedings of ICNP’99, October 1999
[12] Rong Pan, Balaji Prabhakar, and Konstantinos
Psounis, “CHOKe: a stateless AQM scheme for
approximating fair bandwidth allocation”, Proceedings of
IEEE Infocom, March 2000
[13] I. Stoica, S. Shenker, and H. Zhang, “Core-stateless
fair queuing: Achieving approximately fair bandwidth
allocations in high speed networks”, SIGCOMM, pages
118-130, 1998
[14] A. Zanella, G. Procissi, M. Gerla, M. Y. Sanadidi,
“TCP Westwood: Analytic Model and Performance
Evaluation”, IEEE Globecom, November 2001
[15] C. Zhang, V. Tsaoussidis, “TCP-Real: Improving
Real-time Capabilities of TCP over Heterogeneous
Networks”, NOSSDAV 2001

