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Abstract

In this paper, we present a new end-to-end protocol, namely Scalable Streaming Video Protocol (SSVP), which operates
on top of UDP and is optimized for unicast video streaming applications. SSVP employs Additive Increase Multiplicative

Decrease (AIMD)-based congestion control and adapts the sending rate by properly adjusting the inter-packet-gap (IPG).
The smoothness-oriented modulation of AIMD parameters and IPG adjustments reduce the magnitude of AIMD oscil-
lation and allow for smooth transmission patterns, while TCP-friendliness is maintained. Our experimental results dem-
onstrate that SSVP eventually adapts to the vagaries of the network and achieves remarkable performance on real-time
video delivery. In the event where awkward network conditions impair the perceptual video quality, we investigate the
potential improvement via a layered adaptation mechanism that utilizes receiver buffering and adapts video quality along
with long-term variations in the available bandwidth. The adaptation mechanism sends a new layer based on explicit cri-
teria that consider both the available bandwidth and the amount of buffering at the receiver, preventing wasteful layer
changes that have an adverse effect on user-perceived quality. Quantifying the interactions of SSVP with the specific adap-
tation scheme, we identify notable gains in terms of video delivery, especially in the presence of limited bandwidth.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Time-sensitive applications, such as streaming
media, gain popularity and real-time data is
expected to compose a considerable portion of the
overall data traffic traversing the Internet. These
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applications generally prefer timeliness to reliability.
Real-time video streaming, in particular, calls for
strict requirements on end-to-end delay and delay
variation. Furthermore, reliability parameters, such
as packet loss and bit errors, usually compose an
impairment factor, since they cause perceptible deg-
radation on video quality. Unlike bulk-data trans-
fers, video streaming seeks to achieve smooth
playback quality rather than simply transmit at
the highest attainable bandwidth.
.
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Such stringent requirements necessitate explicit
management techniques in order to preserve the
fundamental Quality of Service (QoS) guarantees
for video traffic. In this context, Internet Engineering
Task Force (IETF) attempted to facilitate true end-
to-end QoS on IP networks by defining Integrated

(IntServ) and Differentiated Services (DiffServ) mod-
els [2,19]. IntServ follows the signaled-QoS model,
where the end-hosts signal their QoS need to the
network, while DiffServ works on the provisioned-
QoS model, where network elements are set up to
service multiple classes of traffic with varying QoS
requirements. However, both models are associated
with high implementation costs and limited applica-
bility; hence, they have not yet received wide appeal
from the majority of users. Essentially, most end-
users still rely on the best-effort services of the Inter-
net which strives to meet the high demands of the
emerging multimedia applications.

Today’s Internet is governed by the rules of Addi-
tive Increase Multiplicative Decrease (AIMD) [5],
which effectively contribute to its stability. Essen-
tially, the goal of such algorithms is to prevent
applications from either overloading or under-utiliz-
ing the available network resources. Although
Transmission Control Protocol (TCP) provides reli-
able and efficient services for bulk-data transfers,
several design issues render the protocol unsuitable
for time-sensitive applications. More precisely, the
process of probing for bandwidth and reacting to
observed congestion causes oscillations to the
achievable transmission rate. With TCP’s increase-
by-one and decrease-by-half control strategy, even
an adaptive and scalable source coding scheme is
not able to conceal the flow throughput variation.
Furthermore, TCP occasionally introduces arbi-
trary delays, since it enforces reliability and in-order
delivery. In response to standard TCP’s limitations,
several TCP protocol extensions [1,9] have emerged
providing more efficient bandwidth utilization
and sophisticated mechanisms for congestion con-
trol. TCP-friendly protocols, presented in [9,23,24],
achieve smooth window adjustments, while they
manage to compete fairly with TCP flows. In order
to achieve smoothness, they use gentle backward
adjustments upon congestion. In [21,26] we showed
that this modification has a negative impact on
responsiveness.

User Datagram Protocol (UDP) has been widely
used instead of TCP by real-time applications, since
it allows for transmission attempts at application
rate and consequently, induces minimal fluctuations
in the transmission rate. However, UDP poses a
threat to network stability, as it lacks all basic mech-
anisms for flow/congestion control. Furthermore, as
the success of the Internet primarily relies on self-
regulated TCP, it is crucial to enforce compatible
traffic regulations for non-TCP flows. In this con-
text, Internetworking functionality evolves towards
punishing free-transmitting protocols.

Congestion control algorithms are, therefore,
necessary for multimedia applications in order to
deal with the diverse and constantly changing condi-
tions of the Internet. An overview of Internet’s cur-
rent congestion control paradigm reveals that
routers play a relatively passive role: they merely
indicate congestion through packet drops or Explicit

Congestion Notification (ECN). It is the end-systems
that perform the crucial role of responding appropri-
ately to these congestion signals. Numerous video
streaming applications have implemented their own
congestion control mechanisms, usually on a case-
by-case basis on top of UDP. However, implement-
ing application-level congestion control is difficult
and not part of most applications’ core needs.

Time-sensitive application constraints and the
limitations of existing congestion control schemes
circumscribe a framework for potential improve-
ments. We hereby identify distinct cases that moti-
vate end-to-end protocol design for real-time
traffic, especially if efficiency is considered on the
basis of the application requirements:

TCP’s insistence on reliable delivery without tim-
ing considerations has an adverse effect on the
performance of the system, especially for time-
sensitive applications where data packets bear
information with a limited useful lifetime.
Multiplicative decrease with a factor of 1/2 (e.g.
TCP, Rate Adaptation Protocol [16]) causes
transmission gaps that hurt the performance of
real-time applications, which experience jitter
and degraded throughput.
Slow-responding TCP-friendly protocols [23,24]
yield sufficient performance in stationary envi-
ronments. However, responsiveness is critical
for the Internet which operates in the transient
than in the stationary regime.
TCP-Friendly Rate Control (TFRC) [9] arguably
enables smoother delivery than TCP; however,
TFRC’s throughput model is quite sensitive to
parameters (e.g. packet loss rate, Round-Trip
Time), which are often difficult to measure
efficiently and to predict accurately. TFRC is
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also less responsive to short-term network and
session dynamics. In addition, TFRC and TCP
flows may have substantially different average
sending rates, when they share common network
resources. This long-term throughput imbalance
between the two protocols causes coexisting
TCP and TFRC flows to experience different loss
rates, amplifying the throughput difference.
Authors in [17] provide an analytical study of
the limitations of equation-based congestion con-
trol and particularly TFRC.
Source-based decision on the transmission rate,
based on the pace of the acknowledgments (e.g.
TCP Westwood [13]), inevitably incorporates
the potentially asymmetric characteristics of the
reverse path. Thus, bandwidth asymmetry may
result in inaccurate bandwidth estimates, confin-
ing protocol efficiency and subsequently applica-
tion performance.

Following these observations, there is still room
for emerging end-to-end protocols for time-sensitive
applications, especially if they incarnate attractive
properties, such as unreliable delivery with built-in
congestion control. In this context, we have been
working on a congestion control mechanism to
adapt the rate of outgoing video streams to the
characteristics of the end-to-end network path. We
had the option to rely on the unreliable UDP
datagrams or modify TCP to provide unreliable
semantics. However, the latter seems particularly
inappropriate considering the TCP semantics and
its reliance on cumulative acknowledgments. Conse-
quently, we considered UDP as a better choice, due
to its unreliable and out-of-order delivery. Along
these lines, we designed a new congestion control
scheme, namely Scalable Streaming Video Protocol

(SSVP), which is optimized for unicast streaming
video applications. We note that SSVP congestion
control is purely end-to-end and does not rely on
QoS functionality in routers, such as Random Early

Drop (RED), ECN or other Active Queue Manage-

ment mechanisms.
SSVP is designed to provide efficient and smooth

rate control, while maintaining friendliness with
corporate flows. The protocol has the following sali-
ent attributes:

It operates on top of the light-weight UDP which
is already preferred by the majority of streaming
applications and Internet telephony. High-band-
width UDP applications may rely on SSVP,
avoiding the difficult task of implementing con-
gestion control by themselves.
It employs AIMD-oriented congestion control by
adjusting the inter-packet-gap (IPG), depending
on the occurrence of congestion. IPG adjust-
ments generate a smooth data flow by spreading
the data transmission across a time interval,
avoiding the burstiness induced by window-based
mechanisms, such as TCP.
It provides an unreliable transport service, as
retransmissions are often a wasted effort for
time-sensitive traffic: they usually deliver delayed
packets which are either discarded, or at the
worst they obstruct the proper reconstruction
of incoming packets.
SSVP segments include header information
which allows the manipulation of outgoing video
streams (e.g. frame prioritization).

We note that the rationale behind the AIMD
adoption is to establish a friendly behavior for
SSVP. AIMD flows are the Internet’s main band-
width consumer (which is not expected to change
drastically in the near future), and the safest way
to achieve inter-protocol friendliness is to employ
an AIMD mechanism. Recent alternatives, includ-
ing TFRC and delay-based congestion control
(e.g. TCP Vegas [3], FAST TCP [22]), allow for
smoother transmission patterns than AIMD.
Besides the aforementioned TFRC’s limitations,
using delay as a measure of congestion may cause
undesirable effects in terms of bandwidth utilization
and network stability, especially if it is not aug-
mented with loss information. For example, domi-
nating TCP flows may cause such fluctuations that
delay-based congestion avoidance cannot measure
the prevailing network conditions on time. Further-
more, the presence of many short flows may result
in potential starvation of competing long-lived
Vegas/FAST TCP flows.

SSVP composes a viable alternative to existing
congestion control schemes, in the context of media
delivery with timing considerations. Despite AIMD’s
oscillatory nature, SSVP manages to reduce the vari-
ations in the sending rate, as the combined effect of
the following: (i) the protocol enforces a smooth-
ness-oriented modulation of the additive increase
and multiplicative decrease factors, while at the same
time maintains the required TCP-friendliness, (ii) the
transmission rate is adapted once per Round-Trip

Time (RTT), and (iii) the SSVP sender invokes IPG
adjustments spacing outgoing packets evenly.
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Besides the detailed description of protocol
mechanisms and specification, we exploit a recei-
ver-buffered layered adaptation scheme to adjust
the quality of congestion-controlled video on-the-
fly. Receiver buffering reduces jitter, and depending
on the amount of buffered data, the receiver is
enabled to sustain temporary drops in the sending
rate. In order to prevent wasteful layer changes
which impair the perceptual video quality, the
mechanism delivers additional layers based on cer-
tain criteria that consider the available bandwidth
and the amount of buffered data. The layered
scheme is designed to effectively interact with
AIMD mechanisms: layered encoding allows video
quality adjustments over long periods of time,
whereas AIMD congestion control adjusts the
transmission rate rapidly over short-time intervals.
We quantify the efficiency of the receiver-buffered
scheme focusing on the interactions between layered
adaptation and SSVP congestion control. Our sim-
ulations reveal that this combined approach allevi-
ates most of the impairments induced by limited
bandwidth and transient errors.

The remainder of the paper is organized as fol-
lows. Section 2 provides an overview of related
work and congestion control mechanisms for time-
sensitive applications. In Section 3 we discuss the
design and implementation details of the proposed
congestion control scheme. We also study the rela-
tion between the additive increase rate a and multi-
plicative decrease ratio b, which can be translated
into the additive and multiplicative parameters to
adjust IPG. In Section 4 we elaborate on the recei-
ver-buffered layered scheme. Section 5 includes our
evaluation methodology followed by Section 6,
where we provide extensive performance studies of
our mechanisms based on simulations. Finally, Sec-
tion 7 concludes the paper and refers to future
work.

2. An overview of related work and congestion control

schemes for time- sensitive traffic

The literature includes numerous studies and
proposals towards efficient congestion control for
time-sensitive applications in the Internet. Rate

Adaptation Protocol (RAP) [16] is a rate-based pro-
tocol which employs an AIMD algorithm for the
transmission of real-time streams. The sending rate
is continuously adjusted by RAP in a TCP-friendly
fashion, using feedback from the receiver. However,
since RAP employs TCP’s congestion control
parameters (i.e. 1, 0.5), it causes short-term rate
oscillations, primarily due to the multiplicative
decrease. In [15] the specific protocol exploits lay-
ered encoding and the corresponding component,
namely layer manager, tries to deliver the maximum
number of layers that can fit in the available band-
width. Rate adaptation takes place on a timescale of
round-trip times, but layers are added and dropped
on a longer timescale.

Datagram Congestion Control Protocol (DCCP)
[12] is a new transport protocol that provides a con-
gestion-controlled flow of unreliable datagrams.
DCCP is intended for delay-sensitive applications
which have relaxed packet loss requirements. The
protocol aims to add to a UDP-like foundation
the minimum mechanisms necessary to support
congestion control. DCCP provides the applica-
tion with a choice of congestion control mecha-
nisms via Congestion Control IDs (CCIDs), which
explicitly name standardized congestion control
mechanisms. Currently, two CCIDs have been
developed, supporting TCP-like and TFRC conges-
tion control. We point out that SSVP composes an
experimental congestion control scheme which is
not directly comparable with DCCP. Although both
congestion control mechanisms emerge from a com-
mon incentive, DCCP constitutes a generalized
framework for delay-sensitive data transport, while
SSVP explicitly addresses real-time video delivery.

Authors in [7] analyze the impact of selected con-
gestion control algorithms on the performance of
streaming video delivery. They concentrate on bino-
mial congestion control [1] and especially on SQRT,
which responds to packet drops by reducing the
congestion window size proportional to the square
root of its value instead of halving it. In [6] a
Real-Time Transport (RTP) [18] compatible proto-
col (i.e. SR-RTP) is proposed, which adaptively
delivers high quality video in the face of packet loss.
SR-RTP enables selective reliability, retransmitting
only the important data.

Since TCP is rarely chosen to transport real-time
traffic over the Internet, TCP-friendly protocols
constitute an elegant framework for multimedia
applications. We consider as TCP-friendly any pro-
tocol whose long-term arrival rate does not exceed
the one of any conformant TCP in the same circum-
stances [8]. The differences between standard TCP
and TCP-friendly congestion control lie mainly in
the specific values of a and b, while their similarities
in their AIMD-based congestion control. Standard
TCP is therefore viewed as a specific case of AIMD
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(a,b) with a = 1 and b = 0.5. Some TCP-friendly
protocols (e.g. GAIMD [24]) are designed to satisfy
the requirements of delay-sensitive applications.
However, they may exhibit further weaknesses,
when bandwidth becomes available rapidly [21].
Apparently, the tradeoff between responsiveness
and smoothness can be controlled to favor some
applications, but it may cause some other damages.
The choice of parameters a and b has a direct
impact on the responsiveness of the protocols to
conditions of increasing contention or bandwidth
availability.

TFRC [9] is a representative TCP-friendly proto-
col, which adjusts its transmission rate in response
to the level of congestion, as estimated based on
the calculated loss rate. Multiple packet drops in
the same RTT are considered as a single loss event
and hence, the protocol follows a more gentle con-
gestion control strategy. More precisely, the TFRC
sender uses the following TCP response function:

T ðp;RTT;RTOÞ¼ 1

RTT
ffiffiffiffi
2p
3

q
þRTO 3

ffiffiffiffi
3p
8

q� �
pð1þ32p2Þ

;

ð1Þ

where p is the steady-state loss event rate and RTO

is the retransmission timeout value. Eq. (1) enforces
an upper bound on the sending rate T. According to
[9], TFRC’s increase rate never exceeds 0.14 packets
per RTT (or 0.28 packets per RTT when history dis-
counting has been invoked). In addition, the proto-
col requires 5 RTTs in order to halve its sending
rate. Consequently, the instantaneous throughput
of TFRC has a much lower variation over time.
However, this smoothness has a negative impact,
as the protocol becomes less responsive to band-
width availability [21]. MULTFRC [4] is a recent
extension to TFRC for wireless networks, establish-
ing multiple TFRC connections on the same path
when a single connection is not able to utilize the
wireless resources efficiently.

TCP-Real [20,25] is a high-throughput transport
protocol that incorporates a congestion avoidance
mechanism in order to minimize transmission-rate
gaps. As a result, the protocol is suited for real-time
applications, since it enables better performance and
reasonable playback timers. TCP-Real approxi-
mates a receiver-oriented approach beyond the bal-
ancing trade of the parameters of additive increase
and multiplicative decrease. The protocol intro-
duces another parameter, namely c, which deter-
mines the window adjustments during congestion
avoidance. More precisely, the receiver measures
the receiving rate and attaches the result to its
acknowledgments (ACKs), directing the transmis-
sion rate of the sender. When new data is acknow-
ledged and the congestion window (cwnd) is
adjusted, the current data-receiving rate is com-
pared against the previous one. If there is no receiv-
ing rate decrease, cwnd is increased by 1 Maximum

Segment Size every RTT. If the magnitude of the
decrease is small, the cwnd remains temporarily
unaffected; otherwise, the sender reduces the cwnd

multiplicatively by c. In [25] a default value of
c = 1/8 is suggested. However, this parameter can
be adaptive to the detected conditions. Generally,
TCP-Real can be viewed as a TCP (a,b,c) protocol,
where c captures the protocol’s behavior prior to
congestion when congestion boosts up.

TCP Westwood [13] is a transport protocol that
emerged as a sender-side-only modification of
TCP Reno congestion control. TCP Westwood
exploits end-to-end bandwidth estimation in order
to adjust the values of slow-start threshold and cwnd

after a congestion episode. The protocol incorpo-
rates a recovery mechanism which avoids the blind
halving of the sending rate of TCP Reno after
packet loss and enables TCP Westwood to achieve
high link utilization in the presence of wireless
errors. The specific mechanism considers the
sequence of bandwidth samples sample_BWE[n]
obtained using the ACKs arrival and evaluates a
smoothed value, BWE[n], by low-pass filtering the
sequence of samples, as described by the following
pseudocode:

Algorithm 1. TCP-Westwood

If an ACK is received then
set sample_BWE[n] = (acked * pkt_size * 8)/
(now � last_ACK_time)
set BWE[n] = (1 � beta) * (sample_BWE[n] +
sample_BWE[n � 1])/2 + beta * BWE[n � 1]

end if

where acked is the number of segments acknowl-
edged by the last ACK; pkt_size is the segment size
in bytes; now is the current time; last_ACK_time is
the time the previous ACK was received; beta

is the pole used for the filtering (a value of 19/21
is suggested). However, in [14] we showed that
TCP Westwood tends to underestimate the avail-
able bandwidth, due to ACKs clustering. TCP

Westwood+ is a recent extension of TCP Westwood,
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based on the Additive Increase/Adaptive Decrease

(AIAD) mechanism. Unlike the initial version of
Westwood, TCP Westwood+ computes one sample
of available bandwidth every RTT, using all data
acknowledged in the specific RTT [10].
Timestamp

Fig. 1. SSVP header.
3. SSVP design and implementation

3.1. Sender and receiver interaction

SSVP, in a complementary role, operates on top
of UDP and supports end-to-end congestion control
relying on sender and receiver interaction. SSVP
acknowledges the datagrams received by transmit-
ting control packets (containing no data). In accor-
dance with the relaxed packet loss requirements of
streaming video and considering the delays induced
by retransmitted packets, SSVP does not integrate
reliability into UDP datagrams. Hence, control
packets do not trigger retransmissions. However,
they are effectively used in order to determine band-
width and RTT estimates, and properly adjust the
rate of the transmitted video stream.

We have encapsulated additional header infor-
mation to UDP datagrams1 (Fig. 1), including
packet type, sequence number, packet length, frame
type, congestion indicator (CIn) and timestamp.
Packet type field denotes whether a segment with
video-data or a control packet is transmitted. Frame

type can be exploited in order to augment a priori-
tized transmission (where I frames can be priori-
tized). CIn field is used by control packets as a
congestion indicator (i.e. marked with 1 if packet
loss is detected). Although SSVP currently provides
one bit of information for the state of congestion,
the specific field accommodates two bits in the pro-
tocol header to allow for possible future extensions.

Timestamp field is used to handle RTT computa-
tion. More precisely, when the sender transmits a
video-packet, it updates the specific field with cur-
rent time Tsn. As soon as the receiver acquires the
packet, it generates a control packet attaching Tsn

to the timestamp field. Upon the receipt of the cor-
responding feedback, the sender subtracts the
included timestamp from current time in order to
estimate the RTT sample. If Ts0n denotes the time
1 We do not use RTP avoiding its overhead. SSVP header
includes all the necessary fields (i.e. sequence number, timestamp)
to add RTP functionality and enable congestion control.
the packet is being received, the sender gets the
observed value of each RTT, as follows:

SampleRTT ¼ Ts0n � Tsn: ð2Þ

Therefore, SSVP obtains an accurate approxima-
tion of RTT, which does not require synchroniza-
tion between sender’s and receiver’s clocks.

Since SSVP is a protocol without reliability, some
datagrams may be lost due to congestion or inability
of the receiving host from reading the packets rap-
idly enough. The receiver uses packet drops or re-
ordering as congestion indicator. Consequently,
congestion control is triggered when:

a packet is received carrying a sequence number
greater than the expected sequence number and
the receiver does not acquire any packets within a
timeout interval.

The flowchart of SSVP receiver’s responses to the
above events is illustrated in Fig. 2.

The proper adjustment of the timeout interval is
critical. A timeout interval that is set too short will
claim false packet drops resulting in a wasteful
reduction of the transmission rate. On the other
hand, a long and consequently conservative timeout
interval will inevitably impact the protocol respon-
siveness. In order to properly adjust the timeout,
we exploit RTT measurements (SampleRTT) and
based on this quantity we further compute the
weighted average of RTT:

EstimatedRTT ¼ c� EstimatedRTT þ ð1� cÞ
� SampleRTT ð3Þ

setting the smoothing factor c to 0.9. After RTT
estimation, the timeout interval for SSVP (STO)
can be calculated by:

STO ¼ EstimatedRTTþ d�Deviation; ð4Þ

where d is set to 4 and Deviation is the smoothed
estimation of the variation of RTT which is repre-
sented as:
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Deviationn ¼ e�Deviationn�1 þ ð1� eÞ
� jEstimatedRTT � EstimatedRTT0j;

ð5Þ
where Deviationn�1 and EstimatedRTT are the vari-
ation of RTT and the estimated RTT in the last
round respectively, while e is set to 0.25.

Since STO is calculated on the sender, the recei-
ver needs to acquire this estimate. In order to avoid
additional overhead, STO is periodically communi-
cated to the receiver via the Timestamp field. Hence,
the receiver maintains the most recent value of STO.
When the sender attaches STO to an outgoing
packet, it marks a specific bit in the reserved space
of the protocol header. The receiver is therefore able
to detect whether an incoming packet carries a time-
stamp or STO. We note that SSVP estimates the
timeout value similarly to TCP to prevent potential
misbehaviors when SSVP coexists with TCP flows.
For example, [17] uncovers that a main reason for
the long-term throughput imbalance between com-
peting TCP and TFRC flows is the different timeout
estimation schemes between the two protocols.
Fig. 2. SSVP receiv
3.2. Rate adjustment

SSVP adjusts the sending rate in a TCP-friendly
fashion, exploiting the feedback of reception statis-
tics (control packets). Both binomial [1] and AIMD
congestion control are designed to achieve TCP-
friendliness. Although binomial schemes, such as
IIAD or SQRT, are quite attractive to multimedia
applications for their smooth rate variations, they
are not able to achieve TCP-friendliness indepen-
dent of link capacity. Apart from link capacity,
the selection of increase rate and decrease ratio
composes another influencing parameter. Along
these lines, in order to attain TCP-friendliness,
SSVP incorporates AIMD congestion control. Let
a, b the values of additive increase rate and multipli-
cative decrease ratio, respectively. The choice of a
and b has a direct impact on protocol responsive-
ness to conditions of increasing contention or band-
width availability. In highly multiplexed dynamic
networks, AIMD flows with different (a,b) pairs
have different response patterns to transient changes
of network resources. For example, an AIMD flow
er flowchart.
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with a large a and small b is very sensitive to band-
width variation, and consequently its instantaneous
throughput changes rapidly. Such behavior may
cause frequent interruptions on video playback.
Generally, an AIMD protocol with a large b is more
suitable for such applications, as we show in the
sequel.

Fig. 3 illustrates an SSVP flow in the presence of
a scalable video coder. Assuming a packet drop at
time t1, the transmission rate is reduced from R to
bR and immediately the video coder is notified to
reduce the video coding rate. This process (i.e.
coding rate reduction) inevitably incurs a delay d,
and eventually transmission resumes at time
t2 = t1 + d. We investigate the maximum sending
delay with respect to the streaming application
requirements. Let a packet P generated at time t2.
P will be enqueued after a number of packets that
were generated during the time period: t1 6 ts < t2.
Consequently, such a packet will suffer the longest
delay. During ts, the queue inside the sender is
increased with the amount of data obtained by the
area of the shaded rectangular in Fig. 3, i.e.
d(1 � b)R. Hence, the sending delay D that denotes
the amount of time that packet P will rest inside the
server is derived by

D � dð1� bÞR
bR

¼ d
1

b
� 1

� �
: ð6Þ
Assuming a fixed value of d (for a certain video
coder), sending delay D exclusively depends on the
decrease parameter b. With respect to Eq. (6), we
can enhance video delivery by choosing a suitable
value of b. A high decrease ratio can reduce the
sending delays along with the magnitude of AIMD
oscillation, inline with the requirements of media-
streaming applications for smooth patterns of data
Fig. 3. SSVP transmission rate evolution.
transmission. However, a large b enforces the selec-
tion of a small a, according to the TCP-friendly con-
dition obtained in [24]

a ¼ 4ð1� b2Þ
3

: ð7Þ

Based on this intuitive analysis and with respect
to the perceptual video quality, SSVP employs
AIMD congestion control with a = 0.31 and
b = 0.875. The transmission rate is controlled by
properly adjusting IPG. Let S denote the packet
length, the instantaneous transmission rate Ri for
an SSVP flow is given by

Ri ¼
S

ti þ IPGi
� S

IPGi
ð8Þ

if we consider the transmission time ti of the ith
packet negligible (compared to IPG). The sender
adjusts the transmission rate once per RTT in order
to maintain a smoothed flow. More precisely, each
RTT the SSVP source calculates the ratio of the
number of control packets with congestion indica-
tor (i.e. CIn field 1) over the total number of incom-
ing control packets in order to estimate the level of
congestion and subsequently follow the appropriate
recovery strategy. If this ratio exceeds a specific con-
gestion level threshold, the sender infers congestion
and immediately reduces the transmission rate via
the multiplicative increase of IPG:

IPGiþ1 ¼
IPGi

b
: ð9Þ

If the sender has received at least one control
packet with congestion indicator but the measured
ratio does not exceed the congestion level threshold,
a transient loss (e.g. wireless error) is assumed and
the sending rate remains unaffected. The reception
of control packets with no congestion indicator
within an RTT triggers an increase in the transmis-
sion rate by decreasing IPG, as follows:

IPGiþ1 ¼
1

1þ a
IPGi: ð10Þ

We note that the sender-side measurements of
the congestion level are not affected by the spacing
between the incoming control packets. Further-
more, possible control packet losses do not affect
the protocol behavior dramatically; the sender will
still be able to calculate the level of congestion.
Essentially, the combination of the selected AIMD
parameters and IPG adjustments reduces the mag-
nitude of AIMD oscillation and eventually allows
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for a smooth transmission pattern that favors real-
time applications. The congestion level threshold
has been set experimentally to 0.005. Certainly, this
can be adjusted differently in order to modify the
transient behavior of SSVP congestion control.
The detailed operation of the SSVP sender is
described by the following pseudocode:

Algorithm 2. SSVP Sender-Side Operation

if the sender receives a Control Packet then
increase acks_within_rtt
if the Control Packet’s CIn field is 1 then

increase congestion_acks_within_rtt
end if

if (current_time � adjustment_time) P cur-
rent_RTT then

if congestion acks within rtt
acks within rtt

> congestion level
threshold then
set IPGiþ1 ¼ IPGi
b

end if

if congestion_acks_within_rtt = 0 then

set IPGiþ1 ¼ 1
1þa IPGi

end if

set congestion_acks_within_rtt = 0
set acks_within_rtt = 0
set adjustment_time = current_time

end if
end if

where adjustment_time is the time of the previous
rate adjustment (initially set to 0); current_time is
the running time; current_rtt is the last measured
RTT; acks_within_rtt is the number of control pack-
ets received within current RTT; congestion_acks_
within_rtt is the number of control packets with
congestion indicator that were received within cur-
rent RTT.
During startup, it is crucial for any protocol to
explore the available bandwidth rapidly. Increasing
the transmission rate once per RTT (with the proto-
col’s standard increase rate) may result in poor
startup utilization. In order to overcome this limita-
tion the SSVP sender increases the sending rate,
based on Eq. (10), after the reception of each control
packet. As a result, multiple rate increases may occur
within a single RTT, improving bandwidth utiliza-
tion during startup. On the occurrence of conges-
tion, the startup phase is terminated and the SSVP
sender behaves as described in Algorithm 2.

We note that the similarities between SSVP and
RAP lie only in the adjustments of IPG, since both
compose spacing-based schemes. In contrast to
SSVP, the RAP source receives ACKs infrequently
and exploits the redundant information on a single
incoming ACK to detect packet loss, inline with
TCP’s Fast Recovery algorithm. Generally, RAP
attempts to resemble TCP’s functionality, leaving
out only the undesired reliability. However, some
aspects of TCP design that do not favor real-time
delivery are incorporated into RAP. For example,
the multiplicative decrease by a factor of 1/2
invokes abrupt rate reductions upon congestion,
compromising smoothness. Furthermore, RAP is
part of an end-to-end architecture designed specifi-
cally for layered video streams. On the contrary,
SSVP is decoupled from application-level function-
ality and operates independently on top of UDP.
Certainly, SSVP can be augmented by video adapta-
tion schemes, such as layered encoding. We elabo-
rate on this combined approach in the following
section.
4. Layered adaptation

The rationale of the employed adaptation
scheme mainly rests on the assumption that a user’s
perception is sensitive to the changes in video qual-
ity and potential interruptions in the stream play-
back. Despite the degradation in visual quality,
we consider smooth video of reduced bitrate more
preferable than inconsistent and jerky video at high-
est quality. Since processing on the original pixels is
computationally expensive (full decoding and
encoding of the video stream is required), various
scalability techniques have been proposed [15],
which operate on-the-fly. Simulcast uses multiple
versions of the stream, encoded at different bitrates.
The versions of streams used are often limited in
order to avoid high redundancy. The server trans-
mits all the alternate streams and the client switches
to a stream version depending on the available
bandwidth. Layered adaptation has been proposed
as a solution to bandwidth redundancy introduced
by simulcast. This approach is based on informa-
tion decomposition. That is, the video stream is
encoded at a base layer and a number of enhance-

ment layers, which can be combined to render
the stream high quality. Layered adaptation is
performed by adding or dropping enhancement
layers depending on the prevailing network
conditions.

We employ a quality adaptation mechanism
in order to sustain smooth video delivery under
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awkward conditions. We specifically adopt the lay-
ered approach, where the streaming server coarsely
adjusts video quality without the need to implement
transcoding. The efficiency of such mechanism can
be affected by the frequency of layer changes. Since
we do not know in advance how long we will be able
to sustain a specific layer, minimal rate variations
should not directly trigger video quality adjust-
ments. Generally, switching layers unduly usually
induces perceptible video quality variations with
frustrating consequences to the end-user.

Along these lines, we concentrate on defining a
priori whether a new layer should be added under
the properties of AIMD congestion control. We rely
on a layered scheme where each layer is multiplexed
and supplies a corresponding buffer, as shown in
Fig. 4. The server encodes raw video into n cumula-
tive layers using a layered coder: layer 1 is the base
layer and layer n is the least important enhancement
layer. The layer rates are given by ri, i = 1,2, . . . ,n.
The receiver obtains a certain number of layers
depending on bandwidth availability. All active lay-
ers k (1 6 k 6 n) are typically multiplexed in a single
AIMD flow with rate R ¼

Pk
i¼1ri ¼ k�r, where �r

denotes the average rate among the k layers. We
assume that each buffer is drained with a constant
rate ci, i = 1,2, . . . ,k. Consequently, the total
consumption rate at the receiver buffers is C ¼Pk

i¼1ci ¼ k�c, where �c denotes the average consump-
tion rate of the buffers that correspond to the k

active layers.
Fig. 4. Layered adaptation
Following [15], certain conditions in the instanta-
neous transmission rate and the amount of buffering
at the receiver can be applied in order to reduce the
number of layer changes. The simplest way to per-
form layer adaptation is to send the maximum num-
ber of layers that can be accommodated in the
available bandwidth. However, following this
approach, the frequency of layer changes will be
governed by the magnitude of AIMD oscillation
with an adverse impact on user-perceived quality.
Alternatively, layer switching can be reduced, if a
new layer is added, as soon as the current transmis-
sion rate R exceeds the total consumption rate of all
currently active layers plus the new one [15]

R > ðk þ 1Þ�c: ð11Þ

However, relying on such rule does not eventu-
ally prevent layer changes; oscillations in the con-
gestion control algorithm may still result in layer
switching. Only sufficient buffering at the receiver
can smooth out the variations in the available band-
width and sustain a relatively constant number of
active layers throughout the connection.

When transmission rate R exceeds the current
total consumption rate C, the buffers are being filled
with the spare data. In the event of a temporary
drop in the sending rate, the adaptation scheme
may be able to utilize the buffered data at the recei-
ver in order to keep sending the same number of
layers. Since the slope of linear increase for an
AIMD mechanism can be easily estimated (based
with receiver buffering.
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on the increase rate a), we can derive a second rule
expressing the amount of buffering required to pre-
vent a layer drop, until the transmission rate has
reached the total consumption rate again.

Fig. 5 depicts the behavior of an adaptive video
flow under generalized AIMD (a,b) congestion con-
trol. If the AIMD source currently sends k layers,
based on condition (11) a new layer can be added,
as soon as R exceeds the total consumption rate cor-
responding to k + 1 layers, i.e. C ¼ ðk þ 1Þ�c. At
time t1 we observe that R > ðk þ 1Þ�c; an additional
layer can be sent, provided that there is sufficient
buffering at the receiver to survive an eventual
packet loss. Therefore, the buffering requirements
are satisfied when

Xk

i¼1

buf i P P ; ð12Þ

where bufi is the amount of video-data buffered for
the ith layer and P is the shaded portion in Fig. 5. If
condition (12) holds, the decoder draws an amount
of the buffered data (or all buffered data ifPk

i¼1buf i ¼ P Þ, allowing the continuous playback
of k + 1 layers, until R has reached ðk þ 1Þ�c at time
t2. Note that we have considered the most extreme
scenario: a packet loss immediately after adding
the new layer. If the loss occurs later, P (which rep-
resents the area of a triangle) will be smaller, allow-
ing for more relaxed buffering requirements.

Based on Fig. 5, we derive P as follows:

P ¼ 1

2
ðt2 � t1Þ½ðk þ 1ÞC � ð1� bÞR�: ð13Þ

From the time period t1 to t2, the AIMD flow is in
the congestion avoidance phase and the transmis-
sion rate R follows a line segment with slope k.2

The evolution of the transmission rate from t1 to
t2 is expressed as

ðk þ 1ÞC ¼ ð1� bÞRþ kðt2 � t1Þ;

t2 � t1 ¼
ðk þ 1ÞC � ð1� bÞR

k
:

ð14Þ

Combining Eqs. (13) and (14), P is given by

P ¼ ðk þ 1ÞC � ð1� bÞR
2k

½ðk þ 1ÞC � ð1� bÞR�;

P ¼ ½ðk þ 1ÞC � ð1� bÞR�2

2k
:

ð15Þ
2 k represents the rate of linear increase in the transmission rate.
Finally, Eqs. (12) and (15) give the second condi-
tion, which defines the minimum amount of receiver
buffering to send a new layer:

Xk

i¼1

buf i P
½ðk þ 1ÞC � ð1� bÞR�2

2k
: ð16Þ

Besides these criteria, the efficiency of the layered
scheme is also subject to the transmission rate. Ide-
ally, the cumulative consumption rate of all the buf-
fers should equal the mean transmission rate. On
the other hand, empty buffers may cause playback
interruptions with frustrating consequences to the
end-user. Along these lines, it is critical to combine
the layered mechanism with a congestion control
mechanism that maintains a relatively high and
smooth sending rate. In Section 6.1 we show exper-
imentally that SSVP satisfies these criteria. We
rewrite Eq. (16) in the case of SSVP with k = 0.31
and b = 0.875:

Xk

i¼1

buf i P
1

0:62
ðk þ 1ÞC � R

8

� �2

: ð17Þ

Employing both rules for adding new layers enables
the adaptation mechanism to smooth out the varia-
tions in the sending rate and eventually prevent ra-
pid changes in video quality. Therefore, depending
on the amount of buffered data, stable quality in vi-
deo streaming applications can be attained, enhanc-
ing the user experience.

5. Experimental environment

5.1. Experimental settings

The evaluation plan was implemented on the NS-
2 network simulator. In order to assess the efficiency
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of our proposed solution, we implemented an exper-
imental MPEG-4 video streaming server that sup-
ports layered adaptation. The traffic generated
closely matches the statistical characteristics of an
original MPEG-4 video trace. We developed three
separate Transform Expand Sample (TES) models
for I, P and B frames, respectively. The resulting
video stream is generated by interleaving data
obtained by the three models.

Simulations were initially conducted on a single-
bottleneck dumbbell topology with a bottleneck
capacity of 1 Mbps and a round-trip link delay of
44 ms (Fig. 6a). We also enabled simulations on a
network topology (Fig. 6b) which addresses the het-
erogeneity of the Internet. The specific topology
includes multiple bottlenecks, cross traffic, wireless
links and diverse RTTs. The propagation delays of
the access links from all the source nodes and the
links to the FTP sink nodes range from 5 ms to
15 ms, while the corresponding bandwidth capaci-
ties range from 2 Mbps to 10 Mbps. Cross traffic
includes diverse FTP flows over TCP Reno. The
capacity of all access links to the MPEG sink nodes
is set to 2 Mbps. By randomizing RTTs, we avoided
synchronization effects.

In the cross-traffic topology NS-2 error models
were inserted into the access links to the MPEG sink
Fig. 6. Simulation topologies: (a) dumbbell t
nodes with packet error rate adjusted at 1%. In both
topologies we used drop-tail routers with buffer size
adjusted in accordance with the bandwidth-delay

product. Furthermore, we set the packet size to
1000 bytes for all system flows and the maximum
congestion window to 64 KB for all TCP connec-
tions. The duration of each experiment is 60 s. The
results are collected after 2 s in order to avoid the
skew introduced by the startup effect.

5.2. Measuring performance

We hereby refer to the performance metrics sup-
ported by our simulation model. Since both topolo-
gies include MPEG flows competing with corporate
FTP flows, the performance metrics are applied sep-
arately to the MPEG and FTP traffic. Goodput was
used to measure the overall system efficiency in
bandwidth utilization. Goodput is defined as

Goodput ¼ Original Data

Connection Time
;

where Original Data is the number of bytes deliv-
ered to the high-level protocol at the receiver (i.e.
excluding retransmitted packets and overhead) and
Connection Time is the amount of time required
for data delivery. Inter-protocol fairness measure-
opology and (b) cross-traffic topology.



Table 1
Possible PSNR to MOS conversion

PSNR MOS

>37 5 (Excellent)
31–37 4 (Good)
25–31 3 (Fair)
20–25 2 (Poor)
<20 1 (Bad)
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ments were conducted based on Normalized

Throughput, which is the ratio of the average
throughput received by each flow over the band-
width fair share on each case.

The task of specifying the effects of network QoS
parameters on video quality is challenging. Trans-
mission rate fluctuations, increased delays, jitter
and packet loss commonly deteriorate the percep-
tual quality or fidelity of the received video content.
However, these parameters do not affect quality in
an independent manner; they rather act in combina-
tion or cumulatively, and ultimately, only this joint
effect is detected by the end-user.

Jitter composes a critical factor in the perfor-
mance of video delivery. Packet jitter is the delay
variation experienced by packets in a single session.
Let D(i, j) denote the value of packet spacing at the
receiver compared with packet spacing at the sender
for a pair of packets i and j. D(i, j) is represented as

Dði; jÞ ¼ ðRj � RiÞ � ðSj � SiÞ
¼ ðRj � SjÞ � ðRi � SiÞ; ð18Þ

where Si, Sj, Ri and Rj denote the sending and
receiving times for packets i and j, respectively. In
the absence of jitter, the spacings will be the same
and D(i, j) will be zero. Packet jitter is calculated
continuously as a weighted average of the observed
values of D(i, j)

Jði; jÞ ¼ 15

16
Jði; jÞ þ 1

16
jDði; jÞj: ð19Þ

We further exploit two metrics for the evaluation
of perceptual video quality: Peak Signal-to-Noise

Ratio (PSNR) and Video Delivery Index (based on
[14]). PSNR compares the maximum possible signal
energy to the noise energy between a source and
destination image, IS and ID respectively. PSNR is
defined as

PSNRðID; ISÞ ¼ 20 log 10
V peak

MSEðIS ; IDÞ
½dB�; ð20Þ

where MSE(IS, ID) is the mean square error of the
two images and Vpeak = 2h � 1, with h the bit color
depth. We note that representing PSNR frame by
frame is more tractable than calculating the average
of PSNR values of all frames, since an average
PSNR may not map well to the overall subjective
impression during video playback. Therefore, we
rely on the frame-wise PSNR to assess video quality
only for a single MPEG transfer. [11] provides a
heuristic mapping of PSNR to Mean Opinion Score
(MOS), as shown in Table 1. MOS is a numerical
measure of perceptual quality at the receiving end.
The metric virtually indicates the video quality per-
ceived by the end-user on a scale from 1 (worst) to 5
(best).

For experiments with multiple flows, we use
Video Delivery Index, which captures the joint effect
of jitter and packet loss on perceived quality. The
metric monitors packet inter-arrival times and dis-
tinguishes the packets that can be effectively used
by the client application (i.e. without causing inter-
ruptions) from delayed packets according to a con-
figurable packet inter-arrival threshold. The
proportion of the number of delayed packets is
denoted as Delayed Packets Rate. Video Delivery
Index is defined as the ratio of the number of jit-
ter-free packets over the total number of packets
sent by the application

Video Delivery Index ¼ #jitter-free packets

#sent packets
6 1:

In accordance with video streaming delay guide-
lines, we adjusted the packet inter-arrival threshold
at 75 ms. For a system with multiple flows, we pres-
ent the average of the Video Performance Index of
each MPEG flow.
6. Performance evaluation

In this section, we demonstrate extensive perfor-
mance studies based on simulations. More precisely,
we assess SSVP’s performance from the perspective
of bandwidth utilization, video delivery, and inter-
protocol fairness. Further, we quantify the efficiency
of the receiver-buffered scheme, focusing on the
interactions between layered adaptation and SSVP
congestion control.
6.1. Single SSVP flow

Initially, we evaluate the efficiency of SSVP from
the perspective of video delivery. We conducted
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simulations on the dumbbell topology, where an
SSVP flow competes with two FTP flows over
TCP Reno. Fig. 7 illustrates an excerpt from an
MPEG transfer with SSVP. The protocol is able
to sustain a regular transmission rate with oscilla-
tions of small magnitude. More precisely, the inte-
grated AIMD (0.31, 0.875) congestion control
results in gentle rate reductions in response to
packet drops. SSVP may also achieve a certain level
of responsiveness, although it does not exhibit
TCP’s prompt responses to sudden bandwidth
availability, due to the small increase rate.

The performance of video delivery is additionally
shown in Fig. 8. An SSVP flow shares the bottle-
neck link with two FTP connections, which are
expected to cause noticeable disturbances on per-
ceived video quality. Nevertheless, jitter never
exceeds the frustrating limit of 75 ms, since SSVP
effectively smoothes transmission gaps validating
our choice to apply a multiplicative decrease factor
Fig. 7. SSVP sending rate.

Fig. 8. SSVP packet jitter.
of 0.875. Such a performance does not necessitate
the use of deep playback buffers in order to amelio-
rate the negative effect of jitter. Only in conditions
of scarce bandwidth and increased contention, a
playback buffer may notably improve the perceptual
quality and reduce potential interruptions on video
playback.

Fig. 9 illustrates frame-by-frame PSNR measure-
ments for an MPEG video transfer under the same
network conditions. PSNR values are acceptable
throughout the video sequence, with the absence
of considerable distortions in the video stream.
Note that a certain amount of distortion is unavoid-
able, as the effect of lossy coding algorithms. Map-
ping the PNSR values of Fig. 9 to MOS grades,
based on Table 1, provides a simplified and widely
used numerical description of visual quality percep-
tion. All received video frames are characterised by
either good or excellent MOS grade, achieving satis-
factory performance on video delivery throughout
the entire connection.

Based on the same network topology (i.e. dumb-
bell), we investigate the impact of SSVP on corpo-
rate traffic. We simulated a single SSVP flow
competing with a diverse number of FTP flows (1–
30) successively. Fig. 10 illustrates the correspond-
ing Normalized Throughput measurements. The tar-
get sending rate for SSVP is adjusted at 380 Kbps in
order to enforce strong contention with interfering
TCP flows. Despite the limited bandwidth resources
(1 Mbps), TCP flows are allowed to obtain a fair
share of the link (in each case they score Normalized

Throughput of nearly 1). On the other hand, SSVP
manages to allocate the remaining resources, since
bottleneck link utilization is always more than 80%.

Fig. 11 illustrates the sending rates of an SSVP
and an FTP flow over TCP Reno, while sharing a
network channel (dumbbell topology). In this case,
Fig. 9. PSNR.



Fig. 10. Normalized throughput.

Fig. 11. SSVP coexisting with TCP Reno.
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the target sending rate for SSVP is set to 1 Mbps.
The video flow joins the network at 20 s and com-
petes with FTP traffic for the remaining 40 s. SSVP
allows the evolution of the TCP’s sending rate,
which periodically approximates the bottleneck
capacity. We also observe that TCP achieves a rapid
recovery from multiple losses; an indication that
SSVP has a friendly behavior to corporate traffic.
Furthermore, Fig. 11 depicts that both SSVP and
TCP flows eventually reach a steady state, i.e. each
flow additively increases and multiplicatively
decreases its transmission rate periodically. How-
ever, we note that TCP converges faster to the
steady state than SSVP, since TCP employs a higher
increase rate. A conclusive overview of Figs. 10 and
11 indicates that SSVP coexists fairly with TCP.
6.2. Performance with heterogeneous networks and

high link-multiplexing

We additionally carried out a series of simula-
tions on the cross-traffic topology in order to assess
the performance of SSVP versus TCP-friendly and
UDP traffic. We simulated a wide range of MPEG
flows (1–50) with (i) SSVP, (ii) TFRC, (iii) TCP
Westwood+ (TCPW+), and (iv) UDP, compet-
ing with 10 FTP connections of TCP Reno, succes-
sively. The corresponding results appear in Fig. 12.
In addition, we present selected traces of the queue
length of the router R2 (Fig. 13) in the presence of
40 MPEG flows (plus 10 FTP connections).

Since UDP does not incorporate any close-loop
control, the sender keeps transmitting at application
rate. As a result, at high contention (30–50 flows) the
protocol achieves the highest goodput rates, outper-
forming the rest of the protocols. SSVP also exhibits
high bandwidth utilization, regardless of link multi-
plexing (Fig. 12a). Inline with the single-flow results,
SSVP adapts to the vagaries of the network and is
also less susceptible to random packet loss, such as
the sporadic wireless errors. Both TFRC and
TCPW+ are able to change the sending rate adap-
tively, although in a different fashion. In the situation
of low contention (1–20 flows) where packet loss rate
is insignificant, TFRC manages to effectively utilize
the available bandwidth. However, during high link
multiplexing and compared to SSVP, TFRC exhibits
a slight deficiency, as shown in Fig. 12a. TFRC is
designed to respond to a loss event (which may
include several packet drops) instead of a packet loss.
However, in environments with transient errors,
TFRC occasionally fails to obtain accurate estimates
of the loss event rate, invoking an inappropriate
equation-based recovery that impacts its perfor-
mance. Furthermore, TFRC’s gentle backward
adjustments in response to congestion may favor
smooth video delivery in normal conditions, but
occasionally fail to relinquish a considerable amount
of the allocated network resources during congestion
periods. As a result, queues in the bottleneck buffers
are rapidly built up. The average queue-length mea-
surements of router R2, as shown in Table 2, reveal
a tendency of TFRC to buffer overflows. TCPW+
yields a notable inefficiency in terms of goodput per-
formance (Fig. 12a). Despite the improvements over
the initial version of Westwood, TCPW+’s algorithm
still does not obtain accurate estimates in heteroge-
neous environments, since the estimation filter is
slow, needing time to converge to the available band-
width. This observation is profound in the case of
limited bandwidth (high contention), where the
goodput rate is diminished.

Since goodput gains do not necessitate improved
performance on video delivery, we demonstrate the
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Fig. 12. Performance with heterogeneous networks: (a) goodput of MPEG flows, (b) average Video Delivery Index and (c) Delayed
Packets Rate.

a b

Fig. 13. Queue length of router R2 (40 MPEG flows): (a) UDP and (b) SSVP.

Table 2
Average queue length of router R2 (40 MPEG flows)

Protocol Average queue length

TFRC 27.8
TCP Westwood+ 12.2
UDP 23.6
SSVP 15.3
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average Video Delivery Index of the MPEG flows, as
well as statistics from delayed packets in order to
quantify protocol efficiency. According to
Fig. 12b, SSVP yields the most prominent perfor-
mance on video delivery. The smoothness-oriented
modulation of the AIMD parameters and the low
frequency of rate adaptation enhance application
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performance and maximize the user experience.
Furthermore, Fig. 12c illustrates that both SSVP
and TFRC achieve the timely delivery of most pack-
ets, inducing minimal impairments on video quality.
Unlike the unresponsive UDP that results in rapidly
growing queues and buffer overflows (Fig. 13a),
SSVP enforces a more persistent buffer draining
phase by promptly responding to congestion
(Fig. 13b). Despite the choice of a large b, SSVP
performs sharper backward adjustments than
TFRC, according to the average queue-length mea-
surements of Table 2. Since SSVP does not overload
network buffers, it maintains network stability and
is cooperative with interfering flows.

Despite TFRC’s respectable performance in
terms of bandwidth utilization, the increased packet
drops degrade its efficiency, as shown by Video

Delivery Index in Fig. 12b, which reflects the joint
effect of jitter and packet loss. In addition, when
competing long-lived TCP and TFRC flows on the
same bottleneck have different sending rates, their
observed loss event rates can be significantly differ-
ent [17]. Since TFRC’s throughput model, as
expressed in Eq. (1), is sensitive to the packet loss
rate, the transmission rate can be adjusted inaccu-
rately with direct implications on real-time delivery.
On the other hand, TCPW+’s low goodput rates
inevitably impact the performance on video delivery
(Fig. 12b). Besides the tendency of TCPW+ to
underestimate the available bandwidth, the protocol
slows down the transmission in response to the tran-
sient errors. Consequently, the resulting transmis-
sion gaps cause interruptions in the receiving rate
and playback of the video stream (Fig. 12c).

6.3. Performance with receiver-buffered layered
adaptation

Departing from a comparative overview of pro-
tocol performance in terms of video delivery, we
quantify the performance of the receiver-buffered
adaptation scheme. In this context, we enabled
additional simulations of diverse SSVP connections
augmented by the layered adaptation mechanism.
In contrast to immediate adaptation (i.e. based on
instantaneous available bandwidth), our implemen-
tation sends an additional layer only when both
conditions (11) and (17) hold.

Fig. 14 illustrates an excerpt from an MPEG
transfer over SSVP with receiver-buffered layered
adaptation. The simulation was conducted on the
dumbbell topology, where a single SSVP flow com-
petes with two FTP flows (over TCP Reno). The
receiver-buffered scheme results in a minimal num-
ber of layer changes, adapting video quality along
with long-term variations in the available band-
width. We specifically observe several occasions
during the MPEG transfer, where increasing rates
are not immediately followed by the allocation of
a new layer. Furthermore, the sender manages to
deliver higher quality video, since it is periodically
able to transmit at the highest layer (i.e. layer 4).

In the sequel, we evaluate the efficiency of the
quality adaptation scheme in highly multiplexed
dynamic networks. Hence, we conducted additional
experiments on the cross-traffic topology simulating
SSVP flows and interfering TCP traffic (10 FTP
connections). We compare our findings with the
SSVP measurements from the previous scenario,
where we did not exploit the layered adaptation
scheme. The corresponding results are shown in
Fig. 15.

The SSVP flows with the layered adaptation (i.e.
SSVP-LA) deliver video of lower bitrate (the differ-
ence in rate/quality is subject to the prevailing net-
work conditions), and consequently achieve lower
goodput rates (Fig. 15a). On the other hand, in
the absence of a scalable coder, streaming video is
transmitted at optimal quality, achieving higher link
utilization. Fig. 15b illustrates the perceptual QoS
assessment of video quality, which is sensitive to
impairments, such as transmission rate fluctuations,
jitter and packet loss. The beneficial role of the
adaptation scheme is more evident, as the level
of link multiplexing increases. SSVP flows exhibit
a perceptible sensitivity to limited bandwidth
due to the increased contention, and eventually deli-
ver sub-optimal performance on video delivery
(Fig. 15b). On the contrary, the combined approach
of SSVP-LA is notably more efficient, since it
alleviates most of the impairments induced by the
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Fig. 15. The effect of receiver-buffered layered adaptation: (a) goodput of MPEG flows and (b) average Video Delivery Index.
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disturbances of corporate flows. Besides smooth
video delivery, SSVP-LA effectively limits the qual-
ity degradation induced by dropped frames, since
the adaptation mechanism renders the underlying
protocol (i.e. SSVP) more robust to congestion, as
well as to transient loss. Therefore, the flexibility
of the receiver-buffered layered approach allows
for the delivery of smooth video in a wide range
of network and session dynamics.
7. Conclusions and future work

We have presented an alternative solution for the
delivery of congestion-controlled video over the
Internet. SSVP enables AIMD-oriented congestion
control on top of the light-weight UDP and incorpo-
rates attractive properties that enhance real-time
delivery. The selection of protocol parameters and
the IPG adjustments reduce the magnitude of
AIMD oscillation, while the established goal of
TCP-friendliness is not compromised. Based on sim-
ulations, we validated the efficiency of SSVP and we
also demonstrated its feasibility in terms of wide
range deployment. We also showed that SSVP com-
pares very favorably with congestion control mecha-
nisms that explicitly address time-sensitive traffic,
such as TFRC. Beyond the protocol’s behavior, we
quantified the interactions of SSVP with a receiver-
buffered quality adaptation mechanism. In this situ-
ation, we identified further gains on the performance
on video delivery that can be achieved on a long-
term timescale, especially in the presence of scarce
bandwidth. Essentially, SSVP can effectively interact
with scalable video coders, achieving improved per-
formance in highly multiplexed dynamic networks.

Although SSVP is primarily designed for video
streaming applications, it can also provide efficient
transport services for delay-sensitive applications
with relaxed packet loss requirements. Retransmis-
sions can be easily layered above SSVP, enabling
the protocol to support a broader application
domain (e.g. semi-reliable applications). We plan
to integrate a mechanism to adjust reliability
according to the prevailing network conditions, trig-
gering retransmissions for the most important data.
We also investigate potential gains from the adap-
tive modulation of AIMD parameters, based on
current network dynamics.
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