
Journal of Mobile Multimedia, Vol. 2, No.4 (2006) 327-343
© Rinton Press

PERFORMANCE EVALUATION OF REAL-TIME TRANSPORT WITH
LINK-LAYER RETRANSMISSIONS IN WIRED/WIRELESS NETWORKS

PANAGIOTIS PAPADIMITRIOU AND VASSILIS TSAOUSSIDIS

Demokritos University, Xanthi, Greece
{ppapadim, vtsaousi}@ee.duth.gr

Received May 31, 2006

Revised September 20, 2006

Real-time transport over wired/wireless networks is challenging, since wireless links exhibit distinct
characteristics, such as limited bandwidth and high error rates, due to fading or interference. We focus on
the efficiency of mechanisms that bind operationally wired and wireless links. In this context, local error
control is attractive, due to the remarkable feasibility of wireless link protocols in terms of wide range
deployment. We investigate whether local retransmissions enable TCP to efficiently utilize wireless
resources under the constraint of bounded end-to-end delay. Based on an analytical approach, as well as
extensive simulations, we show that local recovery prevents wasteful end-to-end retransmissions and
allows the transport protocol to utilize a higher fraction of the available bandwidth. However, we uncover
undesirable effects of local error control which degrade the performance of real-time delivery in several
occasions. Furthermore, we investigate whether local error control compares favorably with selected
transport-layer mechanisms.

Key words: wireless networks, TCP, congestion control, performance evaluation, real-time
applications

1 Introduction

Towards a next-generation Internet, a variety of heterogeneous wired/wireless networks gain
popularity and fall under extensive research activity. Wireless links exhibit distinct characteristics,
such as limited bandwidth, varying error-rates and potential handoff operations. Consequently, Quality
of Service (QoS) requirements in wireless networking are stringent and complicated, taking
additionally into account the influencing mobile device characteristics and limitations.

Transmission Control Protocol (TCP) is basically designed to provide a reliable service for wired
Internet. The Additive Increase Multiplicative Decrease (AIMD) algorithm [8], incorporated in
standard TCP versions, achieves stability and converges to fairness when the demand of competing
flows exceeds the channel bandwidth. TCP is further enhanced with a series of mechanisms for
congestion management, including Congestion Avoidance [14], Slow Start, Fast Retransmit and Fast
Recovery [23]. Despite these features, TCP demonstrates inadequate performance in heterogeneous
wired/wireless environments. Authors in [24] outline three major shortfalls of TCP: (i) ineffective
bandwidth utilization, (ii) unnecessary congestion-oriented responses to wireless link errors (e.g.
fading channels) and operations (e.g. handoffs), and (iii) wasteful window adjustments over
asymmetric, low-bandwidth reverse paths. More precisely, a suitable TCP for wired/wireless networks
should be able to detect the nature of the errors that result in packet loss in order to determine the
appropriate error-recovery strategy. Based on such an approach, the sender would not be obliged to

328 Performance Evaluation of Real-Time Transport with Link-layer Retransmissions in …

reduce its transmission rate in the event of a wireless error or handoff. A next level of enhancement for
TCP would enable a more sophisticated error-recovery strategy adjusted to the error characteristics of
the underlying network, device constraints and performance trade-offs.

The difficulty of the task that TCP has to perform is further enhanced, when the protocol provides
services for real-time applications. Such applications are comparatively intolerant to delay and
variations of throughput and delay. They are also affected by reliability factors, such as packet drops
due to congestion or link errors. Hence, time-sensitive applications yield satisfactory performance only
under certain QoS provisions, which may vary depending on the application task and the type of media
involved. TCP occasionally introduces arbitrary delays, since it enforces reliability and in-order
delivery. Furthermore, the process of probing for bandwidth and reacting to observed congestion
causes oscillations to the achievable transmission rate. In response to standard TCP limitations, several
TCP protocol extensions [10, 4] have emerged providing more effective bandwidth utilization and
sophisticated mechanisms for congestion control. TCP-friendly protocols, proposed in [10, 27, 28],
achieve smooth window adjustments, while they manage to compete fairly with TCP flows. In order to
achieve smoothness, they use gentle backward adjustments upon congestion. However, this
modification has a negative impact on responsiveness [26].

User Datagram Protocol (UDP) has been widely used instead of TCP in real-time applications.
UDP lacks all basic mechanisms for error recovery and flow/congestion control. Thus, it allows for
transmission attempts at application speed. That said, UDP can not guarantee reliability, and certainly
is not able to deal with network delays either. In [19] we have shown that UDP may perform worse
than TCP in several occasions. Along these lines, we do not include UDP in this study.

Although numerous research proposals have emerged towards improving transport services over
wireless links [2, 3], the converged domain of real-time traffic over wireless networks has not attracted
the required attention from the research community so far. Several approaches operate on transport
layer, most of them pronounced as enhanced TCP versions. In addition, a series of independent
mechanisms have been proposed, which normally interact with TCP and provide reliable transmission
over wireless links. Most of them operate on link-layer. Addressing link errors near the site of their
occurrence appears intuitively attractive for several reasons. First of all, link-layer schemes are likely
to respond more quickly to changes in the error environment, and generally local error control may be
significantly more efficient than end-to-end error control. Furthermore, local error control commonly
operates on exactly the links that require it, rendering the deployment of new and existing wireless link
protocols significantly more feasible than applying novel transport-layer solutions.

However, link-layer approaches may degrade performance, especially in the presence of highly
variable error rates. Local error recovery may alter the characteristics of the network affecting the
functionality of higher layer protocols. For example, local retransmission could result in packet
reordering or in large fluctuations of Round Trip Time (RTT), either of which could trigger TCP
timeouts and retransmissions. In addition, concurrent responses from both local and end-to-end error
control may result in undesirable interactions, causing inefficiencies and potentially instability. The
duplicate retransmissions generated by a link-layer scheme and TCP induce excessive bandwidth
consumption or even buffer overflows. Considering real-time traffic where data packets bear
information with a limited useful lifetime, retransmissions are often a wasted effort. In such
conditions, unfruitful retransmissions deliver delayed packets which are either discarded, or at the
worst they obstruct the proper reconstruction of oncoming packets.

P. Papadimitriou and V. Tsaoussidis 329

Our study builds on and extends the results of [20]. We provide an in-depth assessment of the
performance of link- and transport-layer mechanisms that bind operationally wired and wireless links.
We specifically focus on the performance of real-time delivery applying our performance metric [19]
that effectively captures the joint effect of jitter and packet loss. In this context, we demonstrate the
considerable degradation of TCP performance in the face of packet loss, and we investigate whether
local retransmissions overcome these implications in a variety of situations. We validate both
analytically and experimentally that local error control improves bandwidth utilization, while we
emphasize on the impact of queuing delays across the wireless channel on real-time delivery. We also
point out certain conditions that render local retransmissions more effective. In addition, we
investigate whether local error control compares favorably with selected transport-layer approaches
which address the fundamental QoS provisions of real-time traffic.

We organize the rest of the paper, as follows. Section 2 summarizes related work and provides an
overview of research proposals towards the improvement of real-time performance with TCP. In
Section 3 we evaluate analytically the effect of local error control on flow throughput and network
delay. Section 4 includes our evaluation methodology, followed by Section 5 where we analyze the
results of the experiments we performed. Finally, in the last section we highlight our conclusions and
refer to future work.

2. An Overview of Related Work and TCP Enhancements

2.1 Improving TCP Performance over Wireless Links

We hereby summarize the most remarkable proposals which target at improving the performance of
TCP over wireless links. Authors in [2] provide a comparative overview of such approaches.
Furthermore, open issues of TCP in mobile environments are extensively discussed in [24]. Selected
end-to-end loss differentiation algorithms are applied to TCP-friendly Rate Control (TFRC) and their
efficiency is analyzed in [7]. There are several techniques operating on the link layer, which attempt to
ameliorate the impact of wireless errors [2, 3]. The most remarkable implementations, which provide
error-correction, are Forward Error Correction (FEC) and Automatic Repeat Request (ARQ) [9]. FEC
introduces added overhead to data bits in order to cope with data corruption. Corrupted packets are
directly corrected, without retransmission, which is critical for lossy links exhibiting long delays. In
addition, FEC does not interfere with TCP mechanisms. However, the redundant information is not
exploited in the absence of link errors resulting in a waste of bandwidth. Furthermore, FEC requires
additional resources in CPU processing time, memory and power consumption.

On the other hand, ARQ mechanisms are invoked when packets containing bit errors can not be
corrected. In such case, the erroneous packets are discarded and a retransmission is directly triggered.
Unlike FEC, ARQ allocates additional network resources only when a packet is retransmitted. The
mechanism generally operates more efficiently for low bit rates. An undesirable effect of ARQ is that
it may interfere with TCP [3]. Concerning the relaxed packet loss requirements of time-sensitive
applications, as well as the implications that may be induced by FEC/ARQ in order to maximize
reliability, we chose not to include such mechanisms in our evaluation experiments.

Snoop protocol [3, 2] provides a reliable solution by maintaining TCP end-to-end semantics while
recovering the wireless errors locally. Snoop uses link level buffers at the base station (BS) to cache
packets traversing the wireless link. It retransmits unacknowledged packets and consequently,

330 Performance Evaluation of Real-Time Transport with Link-layer Retransmissions in …

unnecessary timeouts are avoided. Furthermore, Snoop suppresses duplicate acknowledgments
(DACKs) for locally retransmitted packets in order to prevent TCP from performing fast
retransmissions and backward window adjustments.

Additional proposals include split connection protocols. A split connection protocol virtually splits
a TCP connection into two separate connections. The first one connects the sender with the base
station, while the other connection is maintained between the base station and the receiver. A well-
known representative of this family of protocols is Indirect-TCP (I-TCP) [1]. However, these protocols
do not handle handoff operations efficiently [6], since such procedures tend to be slow and
complicated. Furthermore, due to the split scheme, end-to-end semantics of TCP is violated.

2.2 Improving Real-Time Performance with TCP

Since standard TCP is rarely chosen to transport real-time traffic over the Internet, TCP-friendly
protocols constitute an elegant framework for multimedia applications. We consider as TCP-friendly
any protocol whose long-term arrival rate does not exceed the one of any conformant TCP in the same
circumstances [11]. TCP-friendly congestion control has the ability to maintain network stability by
promptly responding to congestion and to be cooperative with other flows, while it commonly
provides more efficient QoS, (i.e. a smoothed sending rate and bounded latency for playback
multimedia applications). The differences between standard TCP and TCP-friendly congestion control
lie mainly in the specific values of α and β, while their similarities in their AIMD based congestion
control (a characteristic that enables us to include them both in the family of TCP (α, β) protocols).
Standard TCP is therefore viewed as a specific case of TCP (α, β) with α = 1 and β = 0.5.

TCP-Real [25, 29] is a high-throughput transport protocol that incorporates congestion avoidance
mechanism in order to minimize transmission-rate gaps. As a result, the protocol is suited for real-time
applications, since it enables better performance and reasonable playback timers. TCP-Real
approximates a receiver-oriented approach beyond the balancing trade of the parameters of additive
increase and multiplicative decrease. The protocol introduces another parameter, namely γ, which
determines the window adjustments during congestion avoidance. More precisely, the receiver
measures the data-receiving rate and attaches the result to its acknowledgments (ACKs), directing the
transmission rate of the sender. When new data is acknowledged and congestion window (cwnd) is
adjusted, the current data-receiving rate is compared against the previous one. If there is no receiving
rate decrease, cwnd is increased by 1 Maximum Segment Size (MSS) every RTT (α = 1). If the
magnitude of the decrease is small, cwnd remains temporarily unaffected; otherwise, the sender
reduces cwnd multiplicatively by γ. In [29] a default value of γ = 1/8 is suggested. However, this
parameter can be adaptive to the detected conditions. Generally, TCP-Real can be viewed as a TCP (α,
β, γ) protocol where γ captures the protocol’s behavior prior to congestion, when congestion boosts up.

TCP Westwood [15] is a TCP-friendly protocol that emerged as a sender-side-only modification of
TCP Reno congestion control. TCP Westwood exploits end-to-end bandwidth estimation in order to
adjust the values of slow-start threshold (ssthresh) and cwnd after a congestion episode. The protocol
incorporates a recovery mechanism which avoids the blind halving of the sending rate of TCP Reno
after packet loss, and enables TCP Westwood to achieve a high link-utilization in the presence of
wireless errors. However, in [17] we showed that TCP Westwood tends to overestimate the available
bandwidth, due to ACKs clustering. TCP Westwood+ is a recent extension of TCP Westwood, based
on the Additive Increase/Adaptive Decrease (AIAD) mechanism. Unlike the initial version of

P. Papadimitriou and V. Tsaoussidis 331

Westwood, TCP Westwood+ computes one sample of available bandwidth every RTT using all data
acknowledged in the specific RTT, therefore obtaining more accurate estimates [12].

Congestion episodes often damage the timely delivery of packets and consequently, degrade real-
time application performance. Hence, congestion avoidance mechanisms usually provide improved
real-time performance. Congestion avoidance may be achieved through packet dropping (i.e. RED) or
otherwise through bandwidth and delay estimation, which trigger transport-level adjustments prior to
congestion. Alternatively, ECN is proposed in [21], where packets are marked rather than dropped
when congestion is about to happen. A well-designed, congestion avoidance mechanism is TCP Vegas
[5, 13]. In TCP Vegas, every RTT the sender calculates the throughput rate which subsequently is
compared to an expected rate. Depending on the outcome of this comparison the transmission rate of
the sender is adjusted accordingly. More precisely, let RTTmin denote the minimum RTT measured by
the TCP source. Whenever an ACK is received, TCP Vegas computes the quantity:

 diff = (expected_Rate – actual_Rate) * RTTmin (1)

The size of cwnd is then increased by 1 if diff < 1, decreased by 1 if diff > 3 and left unchanged if
1 ≤ diff ≤ 3. Based on [5] admissions, Vegas achieves higher transmission rates than TCP Reno and
TCP Tahoe.

Although we explicitly study the behavior of TCP mechanisms in heterogeneous wired/wireless
networks, we briefly refer to selected rate-based protocols, which compose an elegant framework for
time-sensitive applications. TFRC [10] is a representative TCP-friendly protocol, which adjusts its
transmission rate in response to the level of congestion, as estimated based on the calculated loss rate.
Multiple packet drops in the same RTT are considered as a single loss event by TFRC and hence, the
protocol follows a more gentle congestion control strategy. More precisely, the TFRC sender uses the
following TCP response function:

)32p(1 p)
8

3p (3 RTO
3

2pRTT

1)RTO RTT, p,(T
2

 ++

= (2)

where p is the steady-state loss event rate and RTO is the retransmission timeout value. Equation (2)
enforces an upper bound on the sending rate T. However, the throughput model is quite sensitive to
parameters (e.g. p, RTT), which are often difficult to measure efficiently and to predict accurately.
Also, the long-term TCP throughput equation does not capture the transit and short-lived TCP
behaviors, and it is less responsive to short-term network and session dynamics. According to [10],
TFRC’s increase rate, which is solely determined by the value of α, never exceeds 0.14 packets per
RTT (or 0.28 packets per RTT when history discounting has been invoked). In addition, the protocol
requires 5 RTTs in order to halve its sending rate. Consequently, the instantaneous throughput of
TFRC has a much lower variation over time. TFRC eventually achieves the smoothing of the
transmission gaps and therefore, is suitable for applications requiring a smooth sending rate.

Scalable Streaming Video Protocol (SSVP) [18] is a new congestion control scheme, which
operates on top of UDP and is optimized for unicast video streaming applications. The transmission
rate is controlled in a TCP-friendly fashion by properly adjusting the inter-packet-gap, spacing
outgoing packets evenly to produce a smoothed flow. SSVP eventually adapts to the vagaries of the
network and provides efficient QoS provisioning for video streaming applications.

332 Performance Evaluation of Real-Time Transport with Link-layer Retransmissions in …

3. Throughput and Delay Analysis in Wired/Wireless Networks

We consider a typical scenario for real-time transmission over a network that includes a wireless link
with capacity BW. As depicted in Fig. 1, a streaming server transmits data in real-time to a receiver
located in the wireless network. For sake of simplicity, we assume a constant packet loss rate pW across
the wireless channel, due to fading or interference. Consequently, the maximum throughput over the
wireless link is Bw(1 - pW). We also consider the probability of packet loss at nodes A and B, due to
congestion. Therefore, pA and pB denote the packet loss rates at nodes A and B when real-time traffic
and/or interfering traffic overflow the corresponding buffers.

Figure 1 Typical Wireless Scenario

We model throughput rate based on a simple TCP throughput equation [16], which assumes that
DACKs is the only congestion signal during congestion avoidance:

pRTT

MSSCT 0
= (3)

where T is the calculating sending rate, MSS represents the Maximum Segment Size, p the measured
packet loss rate, and 2/30 =C . The end-to-end packet loss rate pS, as observed by the receiver, can
be expressed as a function of pA, pB and pw, as follows:

 pS = pA + (1 - pA) pB + (1 - pA) (1 - pB) pW (4)

With respect to equations (3), (4) and assuming that a single real-time flow with throughput TS does
not fully utilize wireless link capacity BW, we obtain:

s

 0
s

pRTT
MSSCT =

 TS (1 - pS) < BW (1 - pW) (5)

Consequently, if a TCP flow underutilizes the wireless link, equation (5) is satisfied. If interfering
traffic causes no congestion and assuming that BW does not exceed the capacity B of the wired links
(BW ≤ B), we have pS = pW, since pA = pB = 0. Therefore, condition in (5) is simplified to TS < BW.

In the situation of local error control, such as TCP-aware Snoop protocol, pW becomes effectively
zero through local retransmissions. Hence, perceived end-to-end packet loss rate pS΄ is represented as:

]p)p -(1)p - (1 p)p1(p[lim΄p wBABAΑ
0

s +−+=
→wp

 BAΑ s p)p1(p΄p −+≈ (6)

P. Papadimitriou and V. Tsaoussidis 333

With respect to equation (6), TCP throughput TS΄under local-error control becomes independent of the
wireless loss rate pw:

΄pRTT
MSSC΄T

s

 0
s =

and condition in (5) is independent of the wireless channel errors. Furthermore, pS΄< pS ⇒ TS΄ > TS.
Thus, we validated the effectiveness of local retransmissions in terms of throughput performance.
Enabling local error control, the impact of the wireless channel on traffic is expected to be similar to
that of a regular wired connection from the perspective of bandwidth utilization.

The task of specifying the effects of network QoS parameters on real-time delivery is challenging.
Transmission rate fluctuations, increased delays, jitter and packet loss commonly deteriorate the
perceived quality or fidelity of the received video content. We note that these network QoS parameters
do not affect quality in an independent manner; they rather act in combination or cumulatively, and
ultimately, only this joint effect is detected by the end-user. Considering real-time video or voice
transmission, end-to-end delay consists of the delay incurred by the signal from the instant it is
produced by the source until its playback at the recipient. Initially, the analog signal is encoded,
followed by the packetization phase, incurring an encoding (Denc) and packetization (Dpack) delay,
respectively. Video/voice packets are then transmitted on the network. Network delay is expressed by
the summation of propagation (Ph), transmission (Th), and the variable queuing and processing delays
(Qh) for each hop h in the path from the source to the destination. If we include a playback delay
(Dplay) and we ignore the processing delays at both sender and receiver, the end-to-end delay D for a
packet is expressed, as:

playh

Pathh
hhpackenc D)P Q (TD D D +++++= ∑

∈

 (7)

We observe than for a certain codec and connection the only random component in equation (7) is
queuing delay. With concern to the significance of queuing delays, we discuss whether TCP benefits
from local retransmissions in terms of real-time delivery.

Snoop protocol recovers wireless losses locally by cashing incoming packets at a buffer located at
the BS. If we presume that the wireless link is the bottleneck, the queuing delay over the wireless
channel is dominant for the network, and with respect to equation (7), critical for timely delivery. If
error conditions degrade, local error control will need to retransmit harder in order to transfer packets
across the wireless link. As a result, the queue will drain more slowly and will eventually overflow,
resulting in packet drops. Apart from the increased delays, failing to recover from a number of wireless
losses will cause TCP to back off and retransmit the lost packets. Furthermore, RTTs may become
highly variable resulting in wasteful timeouts and retransmissions or, alternatively, excessive back-offs
that would unnecessarily delay later retransmissions.

Error control strategies with different degrees of effectiveness and persistence can be
implemented. However, considering the stringent requirements of time-sensitive traffic, persistent
local retransmission may delay packet delivery significantly. In summary, we identified that link-layer
schemes, and particularly Snoop, improve link utilization by absorbing the unpleasant effects of
wireless losses (i.e. DACKs). However, real-time delivery may suffer, due to the additional and

334 Performance Evaluation of Real-Time Transport with Link-layer Retransmissions in …

variable queuing delays at link-level buffers. In situations of increased or varying error rates local error
control tends to interfere with TCP, degrading performance.

4. Experimental Methodology

4.1 Experimental Settings

The evaluation plan was implemented on the NS-2 network simulator. In our experiments we used a
wired-cum-wireless topology (Fig. 2), where two LANs are connected with a wireless link (5 Mbps).
We simulated local retransmissions based on snooping at the wireless base station in order to study the
interactions between TCP and the Snoop protocol. Error models were configured on both (forward and
reverse) directions of the wireless bottleneck link with configurable packet error rates (PER). PER is
adjusted at 0.01, unless otherwise explicitly stated. The number of source and sink nodes are always
equal. In all experiments, we used droptail routers with buffer size adjusted in accordance with the
bandwidth-delay product.

 In order to simulate real-time traffic, we developed an MPEG-4 Traffic Generator. The traffic
generated closely matches the statistical characteristics of an original video trace. We used three
separate Transform Expand Sample (TES) models for modeling I, P and B frames respectively. The
resulting MPEG-4 stream is generated by interleaving data obtained by the three models. The MPEG
traffic generator was integrated into NS-2 and provides the adjustment of the data rate of the MPEG
stream, as well as useful statistical data (e.g. average bit-rate, bit-rate variance).

 Although we performed a series of experiments over various TCP protocols, we only comment on
results from TCP variants Reno and Vegas, as well as TCP-friendly protocols Westwood+ (TCPW+)
and TCP-Real, which let us reach the most thorough conclusions. We set the packet size to 1000 bytes
and the maximum congestion window for all TCP connections to 64 KB. Each simulation lasts for 60
seconds, and diverse randomization seeds were used in order to reduce simulation dynamics. All the
results are collected after 2 sec in order to avoid the skew introduced by the warming up effect.

Figure 2 Simulation topology

4.2 Measuring Performance

System goodput is used in order to measure the overall system efficiency in bandwidth utilization and
is defined as Goodput = Original_Data / Connection_time, where Original_Data is the number of
bytes delivered to the high-level protocol at the receiver (i.e. excluding retransmitted packets and

P. Papadimitriou and V. Tsaoussidis 335

overhead) and Connection_Time is the amount of time required for data delivery. Long-term fairness is
measured by Fairness Index, derived from the formula given in [8], and defined as

∑
=

n

i 1

2
i)Throughput(/ ∑

=

n

i 1

2
i)Throughputn(, where Throughputi is the throughput of the ith flow and n is the

total number of flows.

Jitter composes a critical factor in the performance of video delivery. According to [22] packet
jitter is the value of packet spacing at the receiver compared with packet spacing at the sender for a
pair of packets. Therefore, the value of jitter reflects packet-by-packet delay. Let Si and Ri denote the
sending and receiving time for packet i respectively; then for two packets i and j, packet jitter can be
expressed as:

 J(i, j) = (Rj – Ri) – (Sj – Si) = (Rj – Sj) – (Ri – Si) (8)

According to equation (8), there is no delay between packets i and j, if the value of J(i, j) is equal to
zero. Let RTTmin denote the RTT excluding the queuing delays and the local retransmissions.
Considering our simulation topology, RTTmin can be approximately constant, since the wireless link is
the bottleneck, and as a result queuing delay over the wireless link is dominant and capable of
absorbing the jitter in the wired domain.

Along these lines, in [19] we proposed a new metric for the performance evaluation of time-
sensitive traffic, called Real-Time Performance, which captures the joint effect of jitter and packet loss
on perceived quality. The metric monitors packet inter-arrival times and distinguishes the packets that
can be effectively used by the client application from delayed packets (according to a configurable
inter-arrival threshold). The proportion of the delayed packets is reflected in Delayed Packets Rate.
Hence, Real-Time Performance Index is defined as the ratio of the number of “timely received
packets” over the total number of packets sent by the application:

1
packetssent #

packets receivedtimely # Index ePerformanc TimeReal ≤=−

In our experiments, the inter-arrival threshold is adjusted at 75 ms. Since real-time traffic is sensitive
to packet losses, we additionally define Packet Loss Rate, as the ratio of the number of lost packets
over the number of packets sent by the application. For a system with multiple flows, we present the
average of the real-time performance of each MPEG flow.

5. Results and Discussion

In the sequel, we demonstrate and analyze the most prominent results from the experiments we
performed based on three distinct scenarios. The basic parameters of each simulation scenario are as
described in the previous section.

5.1 Impact of Link-layer Retransmissions

Initially, we assess the efficiency of local error control with the intent of understanding its behavior.
More precisely, we evaluate the performance of real-time delivery by investigating the interactions
between TCP and the Snoop protocol. We simulated a diverse range of MPEG flows (1-40) and
demonstrate the most conclusive results from TCP Reno (Fig. 3) and TCP Vegas (Fig. 4). We
performed our experiments for each TCP protocol with and without Snoop.

336 Performance Evaluation of Real-Time Transport with Link-layer Retransmissions in …

 (a) System Goodput (b) Average Real-Time Performance

 (c) Delayed Packets Rate (d) Packet Loss Rate

 (e) Number of retransmitted packets (f) Link- vs. transport-layer retransmissions

Figure 3 Impact of link-layer retransmissions on TCP Reno

P. Papadimitriou and V. Tsaoussidis 337

 (a) System Goodput (b) Average Real-Time Performance

 (c) Delayed Packets Rate (d) Packet Loss Rate

 (e) Number of retransmitted packets (f) Link- vs. transport-layer retransmissions

Figure 4 Impact of link-layer retransmissions on TCP Vegas

338 Performance Evaluation of Real-Time Transport with Link-layer Retransmissions in …

Fig. 3a illustrates that Snoop enables TCP Reno to achieve a more efficient performance in terms
of bandwidth utilization. Snoop, running at the link layer, responds to packet losses faster than Reno.
Most wireless losses are recovered locally (within TCP’s timeout) and consequently, TCP
retransmissions along with wasteful backward window adjustments are eventually prevented. This
observation is also depicted in Fig. 3d, where the combination of Reno and Snoop exhibits fewer
packet drops than Reno alone. Figs. 3e, 3f demonstrate statistics from retransmitted packets at the
transport layer (per flow), and a comparison between TCP and local error retransmissions (per flow),
respectively. Local error control in part confines end-to-end retransmissions, allowing the sending
window to inflate. Therefore, higher transmission rates can be achieved. Fig. 3f reveals that Snoop
interacts efficiently with Reno, since the link-layer mechanism manages to recover a considerable
amount of wireless losses locally and prevent several undesirable implications on TCP’s operation.

However, from the perspective of real-time delivery, Snoop’s supportive role is not evident, since
minimal performance gains are occasionally achieved (Fig. 3b). In the situation of high link-
multiplexing where congestion is the primary cause for packet loss, local error control slightly
degrades performance, as the effect of an increased number of delayed packets (Fig. 3c). As we
identified in Section 3, the queuing delays across the wireless channel compose a critical factor for
path delay, while delay variations in the link-layer buffers usually introduce jitter. Consequently,
although Reno benefits from Snoop in terms of bandwidth allocation, the fluctuations in RTTs
compromise real-time performance, and occasionally cause data unavailability at the receiver.

A comparative overview between the interactions of Snoop with Reno (Fig. 3) and Vegas (Fig. 4)
respectively, leads to the overall conclusion that the combination of Reno and Snoop is more effective.
In the situation of Vegas, gains in bandwidth utilization are also noticeable (Fig. 4a), but not as
profound as with Reno (Fig. 3a). In our homogeneous scenario, the competing Vegas connections may
converge to different cwnd values causing variations in flow throughputs. Furthermore, the protocol
measures RTTmin which approximates a constant value in the simulated topology, as reported in
Section 4. Therefore, Vegas does not respond effectively to the fluctuations of RTTs caused by the
varying queuing delays at the BS buffer. In this context, protocol efficiency would be seriously
affected by a persistent local error control scheme. Fig. 4e also validates our conclusion that Snoop
does not interact effectively with Vegas: end-to-end retransmissions are occasionally increased in the
event of local recovery. Therefore, Snoop does not react to packet drops fast enough in order to
prevent retransmissions from the Vegas source. In terms of real-time delivery, Snoop degrades the
performance of Vegas (Fig. 4b), as the proportion of delayed packets (Fig. 4c) is remarkably increased.

Apart from Reno and Vegas, we investigated the interactions of Snoop with other TCP variants,
such as TCPW+ and TCP-Real, and we evaluated the associated impact on real-time application
performance. The overall conclusion of these efforts is that Reno interacts with Snoop more efficiently
among all the TCP versions tested. Inline with our analysis in Section 3, we validated that local error
control commonly improves bandwidth utilization regardless of the TCP protocol. We identify that
despite these gains, the wireless bottleneck link remains underutilized, i.e. TS (1 - pS) < BW (1 - pW)
holds. However, Snoop’s supportive role in terms of real-time performance is not evident. The
interaction of Snoop with end-to-end solutions that address time-sensitive traffic (i.e. TCP Real) is
discouraging. An important issue that enables local error control to achieve adequate performance is
the proper adjustment of retransmission timeout (RTO). That is, RTO should be substantially longer
that the wireless-hop RTT. Furthermore, local retransmission should not be persistent, since packets of
real-time traffic ought to reach the receiver after a short time interval. In the following scenarios the

P. Papadimitriou and V. Tsaoussidis 339

experimental study of Snoop is limited only under TCP Reno (i.e. where Snoop yields most of its
effectiveness).

5.2 Link- vs. Transport-Layer Efficiency

Departing from the analysis of Snoop’s supportive role, we investigate whether local error control
compares favorably with selected transport-layer mechanisms. In the sequel, we present conclusive
results from TCP Reno interacting with Snoop versus TCP protocols Vegas, TCPW+ and Real (Fig.
5), all of which are able to change the sending rate adaptively, although in a different fashion. Both
TCPW+ and TCP-Real address the distinct characteristics of time-sensitive traffic and are implied to
yield remarkable efficiency on real-time delivery over a wide range of network and session dynamics.

Fig. 5a illustrates that the combination of TCP Reno and Snoop achieves the highest bandwidth
utilization. In comparison with the rest of the protocols, Reno and Snoop exhibit the most effective
responses to wireless errors, preventing TCP from unnecessary fast retransmissions and congestion
control invocations. Consequently, local error control composes the most prominent approach towards
bandwidth allocation over wireless links, since it manages to alleviate most of the impairments
induced by wireless errors (Fig. 5d). However, the bottleneck link still remains underutilized, since the
transient errors do not let the sending window inflate to higher values.

Both TCP Vegas and TCP-Real achieve remarkable goodput rates, although Vegas is not designed
for wireless environments, since it is not able to detect the nature of error. On the contrary, Fig. 5a
depicts a deficiency of TCPW+, especially during increased contention. The protocol does not
inherently support error classification invoking congestion-oriented responses to wireless errors. In
addition, despite the improvements over the initial version of Westwood, TCPW+’s algorithm still
does not obtain accurate estimates in heterogeneous environments, failing to achieve adequate
utilization of the available bandwidth.

A comparative view in the results of Figs. 5a and 5b reveals that high goodput rates do not
necessitate improved performance on real-time delivery. Hence, the superior performance of Reno and
Snoop in terms of bandwidth utilization is not met in the real-time performance results (Fig. 5b).
Although Snoop appears to deal effectively with link errors, it is responsible for excessive delays (Fig.
5c), which degrade performance. Local error control has the disadvantage of adding extra queuing and
processing delays, which eventually impair the perceived quality of the real-time stream. Furthermore,
local retransmissions introduce variation in RTTs and are responsible for varying gaps in the receiving
rate.

TCP Vegas and TCP-Real combine effective bandwidth utilization with an acceptable amount of
delayed packets (Fig. 5c) achieving more efficient QoS provisioning for time-sensitive applications
(Fig. 5b). Their congestion avoidance mechanisms enable both protocols to adapt to the vagaries of the
network and eventually deliver a smooth real-time flow. TCP-Real in particular exploits its
mechanisms which smooth transmission gaps and confine short-term oscillations in the sending rate.
On the contrary, as we reported TCPW+ suffers from bandwidth utilization problems with a direct
impact on real-time delivery (Fig. 5b). However, for high link-multiplexing each connection has
limited bandwidth to allocate and thus, TCPW+’s bandwidth underutilization issue is not critical. In
this situation, its real-time performance is not confined. Finally, Fig. 5e depicts that TCPW+ and in
part Vegas can not handle bandwidths sharing efficiently; for both protocols the competing
connections converge to different cwnd values, and therefore achieve different flow throughput rates.

340 Performance Evaluation of Real-Time Transport with Link-layer Retransmissions in …

 (a) System Goodput (b) Average Real-Time Performance

 (c) Delayed Packets Rate (d) Packet Loss Rate

 (e) Fairness Index

Figure 5 Protocol and Real-Time Performance

5.3 Real-Time Delivery vs. Packet Error Rates

In the last scenario, we performed the experiments using diverse packet error rates (PER: 0.01 -
0.05). We also carried out the same experiment without link errors and used it as a reference. Our

P. Papadimitriou and V. Tsaoussidis 341

objective is to demonstrate the impact of diverse packet error rates on bandwidth utilization and
primarily on real-time delivery (Figs. 6, 7).

According to our expectations, the corresponding results illustrate TCP’s performance degradation
in the event of increasing link errors. Reno in conjunction with Snoop is less sensitive to the diverse
packet error rates, due to the extended reliability provided by Snoop. Local error control is able to
mask the worst effects of the high and dynamic error rates often found in wireless networks. The
supportive role of Snoop is more effective, as link errors increase across the wireless channel. Similar
to Reno/Snoop, Vegas exhibits minor implications in the event of increasing wireless errors. On the
contrary, TCP-Real and TCPW+ demonstrate limited efficiency at relatively high packet error rates
(PER: 0.04, 0.05). However, the performance of TCP-Real is notably improved when contention is
increased (i.e. 20 flows).

 (a) System Goodput (b) Average Real-Time Performance

Figure 6 Impact of diverse error rates (10 flows)

 (a) System Goodput (b) Average Real-Time Performance

Figure 7 Impact of diverse error rates (20 flows)

342 Performance Evaluation of Real-Time Transport with Link-layer Retransmissions in …

6. Conclusions and Future Work

We investigated the effect of local error control on real-time transport, motivating by the remarkable
feasibility of wireless link protocols in terms of wide range deployment. We showed both analytically
and experimentally that local retransmissions can deliver considerable improvements on TCP
performance over lossy wireless links, by allowing the protocol to use a higher fraction of the available
bandwidth. However, cashing incoming packets at link-layer buffers may introduce arbitrary delays
that cause perceptible variations in RTTs and disturbing fluctuations in the receiving rate. We
demonstrated that local error control degrades the performance on real-time delivery in a wide range of
network dynamics and regardless of the TCP variant. Although local retransmissions should be
persistent enough to virtually eliminate non-congestive losses, delay-sensitive traffic certainly requires
local recovery of reduced-persistence. Furthermore, RTO should be substantially longer that the
wireless-hop RTT in order to avoid unnecessary timeouts and false triggering of end-to-end congestion
control invocations.

The comparison of Reno/Snoop with selected end-to-end proposals reveals the disability of local
error control to achieve perceptible gains in terms of real-time delivery. Our results show that real-time
performance gains are eventually attained by end-to-end mechanisms that explicitly address time-
sensitive traffic, such as TCP-Real. The specific protocol achieves remarkable performance for highly
multiplexed heterogeneous networks. We also identified the efficiency of TCP Vegas, although the
protocol does not achieve a fair behavior. In summary, most of the end-to-end solutions we tested
achieve effective QoS provisioning for time-sensitive applications. Their performance deteriorates
only over highly error-prone links (i.e. PER > 0.03), where flow characteristics do not follow a
prescribed and static behavior. In such error environments, local error control composes a more
attractive approach. Future work includes the design of a cross-layer scalable scheme that will exploit
information from the link-layer in order to utilize wireless resources more effectively. Such an
approach is intended to support a variety of multimedia applications with a broad range of QoS
requirements over heterogeneous wired/wireless networks.

References

1. A. Bakre and B. R. Badrinath, I-TCP: Indirect TCP for Mobile Hosts, In Proc. of 15th Int/nal

Conference on Distributed Computing Systems (IDCS), Vancouver, Canada, May 1995
2. H. Balakrishnan, V. Padmanabhan, S. Seshan and R. Katz, A Comparison of Mechanisms for

Improving TCP Performance over Wireless Links, ACM/IEEE Transactions on Networking, 5 (6),
1997, 756-769

3. H. Balakrishnan, S. Seshan and R. Katz, Improving Reliable Transport and Handoff Performance
in Cellular Wireless Networks, ACM Wireless Networks, 1(4), December 1995, 469-482

4. D. Bansal and H. Balakrishnan, Binomial Congestion Control Algorithms, In Proc. of IEEE
INFOCOM 2001, Anchorage, Alaska, USA, April 2001

5. L. Brakmo and L. Peterson, TCP Vegas: End to End Congestion Avoidance on a Global Internet,
IEEE Journal on Selected Areas of Communications, 13 (8), October 1995, 1465-1480

6. R. Cáceres and L. Iftode, Improving the Performance of Reliable Transport Protocols in Mobile
Computing Environments, IEEE Journal on Selected Areas in Communications (JSAC), 13 (5),
June 1995, 850-857

7. S. Cen, P. C. Cosman and G. M. Voelker, End-to-end Differentiation of Congestion and Wireless
Losses, IEEE/ACM Transactions on Networking, 11 (5), October 2003, 703-717

P. Papadimitriou and V. Tsaoussidis 343

8. D. Chiu and R. Jain, Analysis of the increase/decrease algorithms for congestion avoidance in
computer networks, Journal of Computer Networks, 17 (1), June 1989, 1-14

9. A. Chockalingam, M. Zorzi and V. Tralli, Wireless TCP performance with link layer FEC/ARQ,
In Proc. of IEEE ICC ‘99, Vancouver, Canada, June 1999

10. S. Floyd, M. Handley, J. Padhye and J. Widmer, Equation-Based Congestion Control for Unicast
Applications, In Proc. of ACM SIGCOMM 2000, Stockholm, Sweden, August 2000

11. S. Floyd and K. Fall, Promoting the use of end-to-end congestion control in the Internet,
IEEE/ACM Transactions on Networking, 7 (4), August 1999, 458-472

12. L. Grieco and S. Mascolo, Performance evaluation and comparison of Westwood+, New Reno,
and Vegas TCP congestion control, ACM Computer Communication Review, 34 (2), April 2004,
25-38

13. U. Hengartner, J. Bolliger and T. Cross, TCP Vegas Revisited, In Proc. of IEEE INFOCOM 2000,
Tel-Aviv, Israel, March 2000

14. V. Jacobson, Congestion avoidance and control, In Proc. of ACM SIGCOMM ‘88, Stanford,
USA, August 1988

15. S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi and R. Wang, TCP Westwood: Bandwidth
Estimation for Enhanced Transport over Wireless Links, In Proc. of ACM MobiCom 2001, Rome,
Italy, July 2001

16. M. Mathis, J. Semke, J. Mahdavi and T. Ott, The macroscopic behavior of the TCP congestion
avoidance algorithm, ACM Comp. Communications Review, 27 (3), July 1997, 67-82

17. P. Papadimitriou and V. Tsaoussidis, Assessment of Internet Voice Transport with TCP, Int/nal
Journal of Communication Systems (IJCS), 19 (4), May 2006, 381-405

18. P. Papadimitriou and V. Tsaoussidis, End-to-end Congestion Management for Real-Time
Streaming Video over the Internet, In Proc. of 49th IEEE GLOBECOM, San Francisco, USA,
November 2006

19. P. Papadimitriou and V. Tsaoussidis, On Transport Layer Mechanisms for Real-Time QoS,
Journal of Mobile Multimedia, Rinton Press, 1 (4), January 2006, 342-363

20. P. Papadimitriou, V. Tsaoussidis and A. Tsioliaridou, The Impact of End-to-end vs. Link-layer
Mechanisms on Real-Time Performance over Wireless Links, In Proc. of 20th Int/nal Conference
on Advanced Information Networking and Applications (AINA 2006), Vienna, Austria, April
2006

21. K. Ramakrishnan and S. Floyd, A proposal to add explicit congestion notification (ECN) to IP,
RFC 2481, January 1999

22. H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson, RTP: A transport protocol for real-time
applications, RFC 1889, IETF, January 1996

23. W. Stevens, TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery
Algorithms, RFC 2001, Janary 1997

24. V. Tsaoussidis and I. Matta, Open issues on TCP for Mobile Computing, Journal of Wireless
Communications and Mobile Computing, 2 (2), February 2002, 3-20

25. V. Tsaoussidis and C. Zhang, TCP Real: Receiver-oriented congestion control, Journal of
Computer Networks, 40 (4), November 2002, 477-497

26. V. Tsaoussidis and C. Zhang, The Dynamics of Responsiveness and Smoothness in
Heterogeneous Networks, IEEE Journal on Selected Areas in Communications (JSAC), 23 (6),
June 2005, 1178-1189

27. Y. R. Yang, M.S. Kim and S.S. Lam, Transient Behaviors of TCP-friendly Congestion Control
Protocols, In Proc. of IEEE INFOCOM 2001, Anchorage, Alaska, USA, April 2001

28. Y. R. Yang and S.S. Lam, General AIMD Congestion Control, In Proc. of 8th Int/nal Conference
on Network Protocols (ICNP), Osaka, Japan, November 2000

29. C. Zhang and V. Tsaoussidis, TCP Real: Improving Real-time Capabilities of TCP over
Heterogeneous Networks, In Proc. of 11th ACM NOSSDAV, New York, USA June 2001

