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Real-time transport over wired/wireless networks is challenging, since wireless links exhibit distinct 
characteristics, such as limited bandwidth and high error rates, due to fading or interference. We focus on 
the efficiency of mechanisms that bind operationally wired and wireless links. In this context, local error 
control is attractive, due to the remarkable feasibility of wireless link protocols in terms of wide range 
deployment. We investigate whether local retransmissions enable TCP to efficiently utilize wireless 
resources under the constraint of bounded end-to-end delay. Based on an analytical approach, as well as 
extensive simulations, we show that local recovery prevents wasteful end-to-end retransmissions and 
allows the transport protocol to utilize a higher fraction of the available bandwidth. However, we uncover 
undesirable effects of local error control which degrade the performance of real-time delivery in several 
occasions. Furthermore, we investigate whether local error control compares favorably with selected 
transport-layer mechanisms. 

Key words: wireless networks, TCP, congestion control, performance evaluation, real-time 
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1 Introduction  

Towards a next-generation Internet, a variety of heterogeneous wired/wireless networks gain 
popularity and fall under extensive research activity. Wireless links exhibit distinct characteristics, 
such as limited bandwidth, varying error-rates and potential handoff operations. Consequently, Quality 
of Service (QoS) requirements in wireless networking are stringent and complicated, taking 
additionally into account the influencing mobile device characteristics and limitations.       

Transmission Control Protocol (TCP) is basically designed to provide a reliable service for wired 
Internet. The Additive Increase Multiplicative Decrease (AIMD) algorithm [8], incorporated in 
standard TCP versions, achieves stability and converges to fairness when the demand of competing 
flows exceeds the channel bandwidth. TCP is further enhanced with a series of mechanisms for 
congestion management, including Congestion Avoidance [14], Slow Start, Fast Retransmit and Fast 
Recovery [23]. Despite these features, TCP demonstrates inadequate performance in heterogeneous 
wired/wireless environments. Authors in [24] outline three major shortfalls of TCP: (i) ineffective 
bandwidth utilization, (ii) unnecessary congestion-oriented responses to wireless link errors (e.g. 
fading channels) and operations (e.g. handoffs), and (iii) wasteful window adjustments over 
asymmetric, low-bandwidth reverse paths. More precisely, a suitable TCP for wired/wireless networks 
should be able to detect the nature of the errors that result in packet loss in order to determine the 
appropriate error-recovery strategy. Based on such an approach, the sender would not be obliged to 
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reduce its transmission rate in the event of a wireless error or handoff. A next level of enhancement for 
TCP would enable a more sophisticated error-recovery strategy adjusted to the error characteristics of 
the underlying network, device constraints and performance trade-offs. 

The difficulty of the task that TCP has to perform is further enhanced, when the protocol provides 
services for real-time applications. Such applications are comparatively intolerant to delay and 
variations of throughput and delay. They are also affected by reliability factors, such as packet drops 
due to congestion or link errors. Hence, time-sensitive applications yield satisfactory performance only 
under certain QoS provisions, which may vary depending on the application task and the type of media 
involved. TCP occasionally introduces arbitrary delays, since it enforces reliability and in-order 
delivery. Furthermore, the process of probing for bandwidth and reacting to observed congestion 
causes oscillations to the achievable transmission rate. In response to standard TCP limitations, several 
TCP protocol extensions [10, 4] have emerged providing more effective bandwidth utilization and 
sophisticated mechanisms for congestion control. TCP-friendly protocols, proposed in [10, 27, 28], 
achieve smooth window adjustments, while they manage to compete fairly with TCP flows. In order to 
achieve smoothness, they use gentle backward adjustments upon congestion. However, this 
modification has a negative impact on responsiveness [26]. 

User Datagram Protocol (UDP) has been widely used instead of TCP in real-time applications. 
UDP lacks all basic mechanisms for error recovery and flow/congestion control. Thus, it allows for 
transmission attempts at application speed. That said, UDP can not guarantee reliability, and certainly 
is not able to deal with network delays either. In [19] we have shown that UDP may perform worse 
than TCP in several occasions. Along these lines, we do not include UDP in this study. 

Although numerous research proposals have emerged towards improving transport services over 
wireless links [2, 3], the converged domain of real-time traffic over wireless networks has not attracted 
the required attention from the research community so far. Several approaches operate on transport 
layer, most of them pronounced as enhanced TCP versions. In addition, a series of independent 
mechanisms have been proposed, which normally interact with TCP and provide reliable transmission 
over wireless links. Most of them operate on link-layer. Addressing link errors near the site of their 
occurrence appears intuitively attractive for several reasons. First of all, link-layer schemes are likely 
to respond more quickly to changes in the error environment, and generally local error control may be 
significantly more efficient than end-to-end error control. Furthermore, local error control commonly 
operates on exactly the links that require it, rendering the deployment of new and existing wireless link 
protocols significantly more feasible than applying novel transport-layer solutions. 

However, link-layer approaches may degrade performance, especially in the presence of highly 
variable error rates. Local error recovery may alter the characteristics of the network affecting the 
functionality of higher layer protocols. For example, local retransmission could result in packet 
reordering or in large fluctuations of Round Trip Time (RTT), either of which could trigger TCP 
timeouts and retransmissions. In addition, concurrent responses from both local and end-to-end error 
control may result in undesirable interactions, causing inefficiencies and potentially instability. The 
duplicate retransmissions generated by a link-layer scheme and TCP induce excessive bandwidth 
consumption or even buffer overflows. Considering real-time traffic where data packets bear 
information with a limited useful lifetime, retransmissions are often a wasted effort. In such 
conditions, unfruitful retransmissions deliver delayed packets which are either discarded, or at the 
worst they obstruct the proper reconstruction of oncoming packets. 
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Our study builds on and extends the results of [20]. We provide an in-depth assessment of the 
performance of link- and transport-layer mechanisms that bind operationally wired and wireless links. 
We specifically focus on the performance of real-time delivery applying our performance metric [19] 
that effectively captures the joint effect of jitter and packet loss. In this context, we demonstrate the 
considerable degradation of TCP performance in the face of packet loss, and we investigate whether 
local retransmissions overcome these implications in a variety of situations. We validate both 
analytically and experimentally that local error control improves bandwidth utilization, while we 
emphasize on the impact of queuing delays across the wireless channel on real-time delivery. We also 
point out certain conditions that render local retransmissions more effective. In addition, we 
investigate whether local error control compares favorably with selected transport-layer approaches 
which address the fundamental QoS provisions of real-time traffic. 

We organize the rest of the paper, as follows. Section 2 summarizes related work and provides an 
overview of research proposals towards the improvement of real-time performance with TCP. In 
Section 3 we evaluate analytically the effect of local error control on flow throughput and network 
delay. Section 4 includes our evaluation methodology, followed by Section 5 where we analyze the 
results of the experiments we performed. Finally, in the last section we highlight our conclusions and 
refer to future work. 

2. An Overview of Related Work and TCP Enhancements 

2.1 Improving TCP Performance over Wireless Links 

We hereby summarize the most remarkable proposals which target at improving the performance of 
TCP over wireless links. Authors in [2] provide a comparative overview of such approaches. 
Furthermore, open issues of TCP in mobile environments are extensively discussed in [24]. Selected 
end-to-end loss differentiation algorithms are applied to TCP-friendly Rate Control (TFRC) and their 
efficiency is analyzed in [7]. There are several techniques operating on the link layer, which attempt to 
ameliorate the impact of wireless errors [2, 3]. The most remarkable implementations, which provide 
error-correction, are Forward Error Correction (FEC) and Automatic Repeat Request (ARQ) [9]. FEC 
introduces added overhead to data bits in order to cope with data corruption. Corrupted packets are 
directly corrected, without retransmission, which is critical for lossy links exhibiting long delays. In 
addition, FEC does not interfere with TCP mechanisms. However, the redundant information is not 
exploited in the absence of link errors resulting in a waste of bandwidth. Furthermore, FEC requires 
additional resources in CPU processing time, memory and power consumption.  

On the other hand, ARQ mechanisms are invoked when packets containing bit errors can not be 
corrected. In such case, the erroneous packets are discarded and a retransmission is directly triggered. 
Unlike FEC, ARQ allocates additional network resources only when a packet is retransmitted. The 
mechanism generally operates more efficiently for low bit rates. An undesirable effect of ARQ is that 
it may interfere with TCP [3]. Concerning the relaxed packet loss requirements of time-sensitive 
applications, as well as the implications that may be induced by FEC/ARQ in order to maximize 
reliability, we chose not to include such mechanisms in our evaluation experiments. 

Snoop protocol [3, 2] provides a reliable solution by maintaining TCP end-to-end semantics while 
recovering the wireless errors locally. Snoop uses link level buffers at the base station (BS) to cache 
packets traversing the wireless link. It retransmits unacknowledged packets and consequently, 
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unnecessary timeouts are avoided. Furthermore, Snoop suppresses duplicate acknowledgments 
(DACKs) for locally retransmitted packets in order to prevent TCP from performing fast 
retransmissions and backward window adjustments.  

Additional proposals include split connection protocols. A split connection protocol virtually splits 
a TCP connection into two separate connections. The first one connects the sender with the base 
station, while the other connection is maintained between the base station and the receiver.  A well-
known representative of this family of protocols is Indirect-TCP (I-TCP) [1]. However, these protocols 
do not handle handoff operations efficiently [6], since such procedures tend to be slow and 
complicated. Furthermore, due to the split scheme, end-to-end semantics of TCP is violated. 

2.2 Improving Real-Time Performance with TCP 

Since standard TCP is rarely chosen to transport real-time traffic over the Internet, TCP-friendly 
protocols constitute an elegant framework for multimedia applications. We consider as TCP-friendly 
any protocol whose long-term arrival rate does not exceed the one of any conformant TCP in the same 
circumstances [11]. TCP-friendly congestion control has the ability to maintain network stability by 
promptly responding to congestion and to be cooperative with other flows, while it commonly 
provides more efficient QoS, (i.e. a smoothed sending rate and bounded latency for playback 
multimedia applications). The differences between standard TCP and TCP-friendly congestion control 
lie mainly in the specific values of α and β, while their similarities in their AIMD based congestion 
control (a characteristic that enables us to include them both in the family of TCP (α, β) protocols). 
Standard TCP is therefore viewed as a specific case of TCP (α, β) with α = 1 and β = 0.5.   

TCP-Real [25, 29] is a high-throughput transport protocol that incorporates congestion avoidance 
mechanism in order to minimize transmission-rate gaps. As a result, the protocol is suited for real-time 
applications, since it enables better performance and reasonable playback timers. TCP-Real 
approximates a receiver-oriented approach beyond the balancing trade of the parameters of additive 
increase and multiplicative decrease. The protocol introduces another parameter, namely γ, which 
determines the window adjustments during congestion avoidance. More precisely, the receiver 
measures the data-receiving rate and attaches the result to its acknowledgments (ACKs), directing the 
transmission rate of the sender. When new data is acknowledged and congestion window (cwnd) is 
adjusted, the current data-receiving rate is compared against the previous one. If there is no receiving 
rate decrease, cwnd is increased by 1 Maximum Segment Size (MSS) every RTT (α = 1). If the 
magnitude of the decrease is small, cwnd remains temporarily unaffected; otherwise, the sender 
reduces cwnd multiplicatively by γ. In [29] a default value of γ = 1/8 is suggested. However, this 
parameter can be adaptive to the detected conditions. Generally, TCP-Real can be viewed as a TCP (α, 
β, γ) protocol where γ captures the protocol’s behavior prior to congestion, when congestion boosts up. 

TCP Westwood [15] is a TCP-friendly protocol that emerged as a sender-side-only modification of 
TCP Reno congestion control. TCP Westwood exploits end-to-end bandwidth estimation in order to 
adjust the values of slow-start threshold (ssthresh) and cwnd after a congestion episode. The protocol 
incorporates a recovery mechanism which avoids the blind halving of the sending rate of TCP Reno 
after packet loss, and enables TCP Westwood to achieve a high link-utilization in the presence of 
wireless errors. However, in [17] we showed that TCP Westwood tends to overestimate the available 
bandwidth, due to ACKs clustering. TCP Westwood+ is a recent extension of TCP Westwood, based 
on the Additive Increase/Adaptive Decrease (AIAD) mechanism. Unlike the initial version of 
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Westwood, TCP Westwood+ computes one sample of available bandwidth every RTT using all data 
acknowledged in the specific RTT, therefore obtaining more accurate estimates [12]. 

Congestion episodes often damage the timely delivery of packets and consequently, degrade real-
time application performance. Hence, congestion avoidance mechanisms usually provide improved 
real-time performance. Congestion avoidance may be achieved through packet dropping (i.e. RED) or 
otherwise through bandwidth and delay estimation, which trigger transport-level adjustments prior to 
congestion. Alternatively, ECN is proposed in [21], where packets are marked rather than dropped 
when congestion is about to happen. A well-designed, congestion avoidance mechanism is TCP Vegas 
[5, 13]. In TCP Vegas, every RTT the sender calculates the throughput rate which subsequently is 
compared to an expected rate. Depending on the outcome of this comparison the transmission rate of 
the sender is adjusted accordingly. More precisely, let RTTmin denote the minimum RTT measured by 
the TCP source. Whenever an ACK is received, TCP Vegas computes the quantity:    

                                    diff = (expected_Rate – actual_Rate) * RTTmin                                         (1) 

The size of cwnd is then increased by 1 if diff < 1, decreased by 1 if diff > 3 and left unchanged if       
1 ≤ diff ≤ 3. Based on [5] admissions, Vegas achieves higher transmission rates than TCP Reno and 
TCP Tahoe.  

Although we explicitly study the behavior of TCP mechanisms in heterogeneous wired/wireless 
networks, we briefly refer to selected rate-based protocols, which compose an elegant framework for 
time-sensitive applications. TFRC [10] is a representative TCP-friendly protocol, which adjusts its 
transmission rate in response to the level of congestion, as estimated based on the calculated loss rate. 
Multiple packet drops in the same RTT are considered as a single loss event by TFRC and hence, the 
protocol follows a more gentle congestion control strategy. More precisely, the TFRC sender uses the 
following TCP response function: 
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where p is the steady-state loss event rate and RTO is the retransmission timeout value. Equation (2) 
enforces an upper bound on the sending rate T. However, the throughput model is quite sensitive to 
parameters (e.g. p, RTT), which are often difficult to measure efficiently and to predict accurately. 
Also, the long-term TCP throughput equation does not capture the transit and short-lived TCP 
behaviors, and it is less responsive to short-term network and session dynamics. According to [10], 
TFRC’s increase rate, which is solely determined by the value of α, never exceeds 0.14 packets per 
RTT (or 0.28 packets per RTT when history discounting has been invoked). In addition, the protocol 
requires 5 RTTs in order to halve its sending rate. Consequently, the instantaneous throughput of 
TFRC has a much lower variation over time. TFRC eventually achieves the smoothing of the 
transmission gaps and therefore, is suitable for applications requiring a smooth sending rate.  

Scalable Streaming Video Protocol (SSVP) [18] is a new congestion control scheme, which 
operates on top of UDP and is optimized for unicast video streaming applications. The transmission 
rate is controlled in a TCP-friendly fashion by properly adjusting the inter-packet-gap, spacing 
outgoing packets evenly to produce a smoothed flow. SSVP eventually adapts to the vagaries of the 
network and provides efficient QoS provisioning for video streaming applications. 
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3. Throughput and Delay Analysis in Wired/Wireless Networks 

We consider a typical scenario for real-time transmission over a network that includes a wireless link 
with capacity BW. As depicted in Fig. 1, a streaming server transmits data in real-time to a receiver 
located in the wireless network. For sake of simplicity, we assume a constant packet loss rate pW across 
the wireless channel, due to fading or interference. Consequently, the maximum throughput over the 
wireless link is Bw(1 - pW). We also consider the probability of packet loss at nodes A and B, due to 
congestion. Therefore, pA and pB denote the packet loss rates at nodes A and B when real-time traffic 
and/or interfering traffic overflow the corresponding buffers.  

 

 
 

Figure 1 Typical Wireless Scenario 
 

We model throughput rate based on a simple TCP throughput equation [16], which assumes that 
DACKs is the only congestion signal during congestion avoidance: 

                                                                
pRTT
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where T is the calculating sending rate, MSS represents the Maximum Segment Size, p the measured 
packet loss rate, and 2/30 =C . The end-to-end packet loss rate pS, as observed by the receiver, can 
be expressed as a function of pA, pB and pw, as follows: 

                                            pS = pA + (1 - pA) pB + (1 - pA) (1 - pB) pW                                           (4) 

With respect to equations (3), (4) and assuming that a single real-time flow with throughput TS does 
not fully utilize wireless link capacity BW, we obtain: 
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                                                         TS (1 - pS) < BW (1 - pW)                                                         (5) 

Consequently, if a TCP flow underutilizes the wireless link, equation (5) is satisfied. If interfering 
traffic causes no congestion and assuming that BW does not exceed the capacity B of the wired links 
(BW  ≤ B), we have pS = pW, since pA = pB = 0. Therefore, condition in (5) is simplified to TS < BW.  

In the situation of local error control, such as TCP-aware Snoop protocol, pW becomes effectively 
zero through local retransmissions. Hence, perceived end-to-end packet loss rate pS΄ is represented as: 
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With respect to equation (6), TCP throughput TS΄under local-error control becomes independent of the 
wireless loss rate pw:  

΄pRTT
MSSC΄T

s

  0
s =  

and condition in (5) is independent of the wireless channel errors. Furthermore, pS΄< pS ⇒  TS΄ > TS. 
Thus, we validated the effectiveness of local retransmissions in terms of throughput performance. 
Enabling local error control, the impact of the wireless channel on traffic is expected to be similar to 
that of a regular wired connection from the perspective of bandwidth utilization. 

The task of specifying the effects of network QoS parameters on real-time delivery is challenging. 
Transmission rate fluctuations, increased delays, jitter and packet loss commonly deteriorate the 
perceived quality or fidelity of the received video content. We note that these network QoS parameters 
do not affect quality in an independent manner; they rather act in combination or cumulatively, and 
ultimately, only this joint effect is detected by the end-user. Considering real-time video or voice 
transmission, end-to-end delay consists of the delay incurred by the signal from the instant it is 
produced by the source until its playback at the recipient. Initially, the analog signal is encoded, 
followed by the packetization phase, incurring an encoding (Denc) and packetization (Dpack) delay, 
respectively. Video/voice packets are then transmitted on the network. Network delay is expressed by 
the summation of propagation (Ph), transmission (Th), and the variable queuing and processing delays 
(Qh) for each hop h in the path from the source to the destination. If we include a playback delay 
(Dplay) and we ignore the processing delays at both sender and receiver, the end-to-end delay D for a 
packet is expressed, as: 

                                          
playh
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hhpackenc D )P Q  (TD D D +++++= ∑
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                                    (7) 

We observe than for a certain codec and connection the only random component in equation (7) is 
queuing delay. With concern to the significance of queuing delays, we discuss whether TCP benefits 
from local retransmissions in terms of real-time delivery. 

Snoop protocol recovers wireless losses locally by cashing incoming packets at a buffer located at 
the BS. If we presume that the wireless link is the bottleneck, the queuing delay over the wireless 
channel is dominant for the network, and with respect to equation (7), critical for timely delivery. If 
error conditions degrade, local error control will need to retransmit harder in order to transfer packets 
across the wireless link. As a result, the queue will drain more slowly and will eventually overflow, 
resulting in packet drops. Apart from the increased delays, failing to recover from a number of wireless 
losses will cause TCP to back off and retransmit the lost packets. Furthermore, RTTs may become 
highly variable resulting in wasteful timeouts and retransmissions or, alternatively, excessive back-offs 
that would unnecessarily delay later retransmissions.  

Error control strategies with different degrees of effectiveness and persistence can be 
implemented. However, considering the stringent requirements of time-sensitive traffic, persistent 
local retransmission may delay packet delivery significantly. In summary, we identified that link-layer 
schemes, and particularly Snoop, improve link utilization by absorbing the unpleasant effects of 
wireless losses (i.e. DACKs). However, real-time delivery may suffer, due to the additional and 
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variable queuing delays at link-level buffers. In situations of increased or varying error rates local error 
control tends to interfere with TCP, degrading performance.  

4. Experimental Methodology 

4.1 Experimental Settings 

The evaluation plan was implemented on the NS-2 network simulator. In our experiments we used a 
wired-cum-wireless topology (Fig. 2), where two LANs are connected with a wireless link (5 Mbps). 
We simulated local retransmissions based on snooping at the wireless base station in order to study the 
interactions between TCP and the Snoop protocol. Error models were configured on both (forward and 
reverse) directions of the wireless bottleneck link with configurable packet error rates (PER). PER is 
adjusted at 0.01, unless otherwise explicitly stated. The number of source and sink nodes are always 
equal. In all experiments, we used droptail routers with buffer size adjusted in accordance with the 
bandwidth-delay product. 

     In order to simulate real-time traffic, we developed an MPEG-4 Traffic Generator. The traffic 
generated closely matches the statistical characteristics of an original video trace. We used three 
separate Transform Expand Sample (TES) models for modeling I, P and B frames respectively. The 
resulting MPEG-4 stream is generated by interleaving data obtained by the three models. The MPEG 
traffic generator was integrated into NS-2 and provides the adjustment of the data rate of the MPEG 
stream, as well as useful statistical data (e.g. average bit-rate, bit-rate variance).  

     Although we performed a series of experiments over various TCP protocols, we only comment on 
results from TCP variants Reno and Vegas, as well as TCP-friendly protocols Westwood+ (TCPW+) 
and TCP-Real, which let us reach the most thorough conclusions. We set the packet size to 1000 bytes 
and the maximum congestion window for all TCP connections to 64 KB. Each simulation lasts for 60 
seconds, and diverse randomization seeds were used in order to reduce simulation dynamics. All the 
results are collected after 2 sec in order to avoid the skew introduced by the warming up effect. 
 

 
Figure 2 Simulation topology 

4.2 Measuring Performance 

System goodput is used in order to measure the overall system efficiency in bandwidth utilization and 
is defined as Goodput = Original_Data / Connection_time, where Original_Data is the number of 
bytes delivered to the high-level protocol at the receiver (i.e. excluding retransmitted packets and 
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overhead) and Connection_Time is the amount of time required for data delivery. Long-term fairness is 
measured by Fairness Index, derived from the formula given in [8], and defined as 

∑
=

n

i 1

2
i)Throughput( / ∑

=

n

i 1

2
i )Throughputn( , where Throughputi is the throughput of the ith flow and n is the 

total number of flows. 

Jitter composes a critical factor in the performance of video delivery. According to [22] packet 
jitter is the value of packet spacing at the receiver compared with packet spacing at the sender for a 
pair of packets. Therefore, the value of jitter reflects packet-by-packet delay. Let Si and Ri denote the 
sending and receiving time for packet i respectively; then for two packets i and j, packet jitter can be 
expressed as: 

                                            J(i, j) = (Rj – Ri) – (Sj – Si) = (Rj – Sj) – (Ri – Si)                                      (8) 

According to equation (8), there is no delay between packets i and j, if the value of J(i, j) is equal to 
zero. Let RTTmin denote the RTT excluding the queuing delays and the local retransmissions. 
Considering our simulation topology, RTTmin can be approximately constant, since the wireless link is 
the bottleneck, and as a result queuing delay over the wireless link is dominant and capable of 
absorbing the jitter in the wired domain. 

Along these lines, in [19] we proposed a new metric for the performance evaluation of time-
sensitive traffic, called Real-Time Performance, which captures the joint effect of jitter and packet loss 
on perceived quality. The metric monitors packet inter-arrival times and distinguishes the packets that 
can be effectively used by the client application from delayed packets (according to a configurable 
inter-arrival threshold). The proportion of the delayed packets is reflected in Delayed Packets Rate. 
Hence, Real-Time Performance Index is defined as the ratio of the number of “timely received 
packets” over the total number of packets sent by the application: 

1
packetssent #

packets receivedtimely # Index  ePerformanc TimeReal ≤=−  

In our experiments, the inter-arrival threshold is adjusted at 75 ms. Since real-time traffic is sensitive 
to packet losses, we additionally define Packet Loss Rate, as the ratio of the number of lost packets 
over the number of packets sent by the application. For a system with multiple flows, we present the 
average of the real-time performance of each MPEG flow. 

5. Results and Discussion 

In the sequel, we demonstrate and analyze the most prominent results from the experiments we 
performed based on three distinct scenarios. The basic parameters of each simulation scenario are as 
described in the previous section. 

5.1 Impact of Link-layer Retransmissions 

Initially, we assess the efficiency of local error control with the intent of understanding its behavior. 
More precisely, we evaluate the performance of real-time delivery by investigating the interactions 
between TCP and the Snoop protocol. We simulated a diverse range of MPEG flows (1-40) and 
demonstrate the most conclusive results from TCP Reno (Fig. 3) and TCP Vegas (Fig. 4). We 
performed our experiments for each TCP protocol with and without Snoop. 
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                               (a) System Goodput                                                      (b) Average Real-Time Performance 

  
                    (c) Delayed Packets Rate                                                          (d) Packet Loss Rate 

  
           (e) Number of retransmitted packets                                (f) Link- vs. transport-layer retransmissions 
 

Figure 3 Impact of link-layer retransmissions on TCP Reno 
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                                 (a) System Goodput                                                  (b) Average Real-Time Performance 

 
                         (c) Delayed Packets Rate                                                             (d) Packet Loss Rate 

  
                (e) Number of retransmitted packets                                  (f) Link- vs. transport-layer retransmissions 

 

Figure 4 Impact of link-layer retransmissions on TCP Vegas 
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Fig. 3a illustrates that Snoop enables TCP Reno to achieve a more efficient performance in terms 
of bandwidth utilization. Snoop, running at the link layer, responds to packet losses faster than Reno. 
Most wireless losses are recovered locally (within TCP’s timeout) and consequently, TCP 
retransmissions along with wasteful backward window adjustments are eventually prevented. This 
observation is also depicted in Fig. 3d, where the combination of Reno and Snoop exhibits fewer 
packet drops than Reno alone. Figs. 3e, 3f demonstrate statistics from retransmitted packets at the 
transport layer (per flow), and a comparison between TCP and local error retransmissions (per flow), 
respectively. Local error control in part confines end-to-end retransmissions, allowing the sending 
window to inflate. Therefore, higher transmission rates can be achieved. Fig. 3f reveals that Snoop 
interacts efficiently with Reno, since the link-layer mechanism manages to recover a considerable 
amount of wireless losses locally and prevent several undesirable implications on TCP’s operation. 

However, from the perspective of real-time delivery, Snoop’s supportive role is not evident, since 
minimal performance gains are occasionally achieved (Fig. 3b). In the situation of high link-
multiplexing where congestion is the primary cause for packet loss, local error control slightly 
degrades performance, as the effect of an increased number of delayed packets (Fig. 3c). As we 
identified in Section 3, the queuing delays across the wireless channel compose a critical factor for 
path delay, while delay variations in the link-layer buffers usually introduce jitter. Consequently, 
although Reno benefits from Snoop in terms of bandwidth allocation, the fluctuations in RTTs 
compromise real-time performance, and occasionally cause data unavailability at the receiver.  

A comparative overview between the interactions of Snoop with Reno (Fig. 3) and Vegas (Fig. 4) 
respectively, leads to the overall conclusion that the combination of Reno and Snoop is more effective. 
In the situation of Vegas, gains in bandwidth utilization are also noticeable (Fig. 4a), but not as 
profound as with Reno (Fig. 3a). In our homogeneous scenario, the competing Vegas connections may 
converge to different cwnd values causing variations in flow throughputs. Furthermore, the protocol 
measures RTTmin which approximates a constant value in the simulated topology, as reported in 
Section 4. Therefore, Vegas does not respond effectively to the fluctuations of RTTs caused by the 
varying queuing delays at the BS buffer. In this context, protocol efficiency would be seriously 
affected by a persistent local error control scheme. Fig. 4e also validates our conclusion that Snoop 
does not interact effectively with Vegas: end-to-end retransmissions are occasionally increased in the 
event of local recovery. Therefore, Snoop does not react to packet drops fast enough in order to 
prevent retransmissions from the Vegas source. In terms of real-time delivery, Snoop degrades the 
performance of Vegas (Fig. 4b), as the proportion of delayed packets (Fig. 4c) is remarkably increased. 

Apart from Reno and Vegas, we investigated the interactions of Snoop with other TCP variants, 
such as TCPW+ and TCP-Real, and we evaluated the associated impact on real-time application 
performance. The overall conclusion of these efforts is that Reno interacts with Snoop more efficiently 
among all the TCP versions tested. Inline with our analysis in Section 3, we validated that local error 
control commonly improves bandwidth utilization regardless of the TCP protocol. We identify that 
despite these gains, the wireless bottleneck link remains underutilized, i.e. TS (1 - pS) < BW (1 - pW) 
holds. However, Snoop’s supportive role in terms of real-time performance is not evident. The 
interaction of Snoop with end-to-end solutions that address time-sensitive traffic (i.e. TCP Real) is 
discouraging. An important issue that enables local error control to achieve adequate performance is 
the proper adjustment of retransmission timeout (RTO). That is, RTO should be substantially longer 
that the wireless-hop RTT. Furthermore, local retransmission should not be persistent, since packets of 
real-time traffic ought to reach the receiver after a short time interval. In the following scenarios the 
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experimental study of Snoop is limited only under TCP Reno (i.e. where Snoop yields most of its 
effectiveness). 

5.2 Link- vs. Transport-Layer Efficiency 

Departing from the analysis of Snoop’s supportive role, we investigate whether local error control 
compares favorably with selected transport-layer mechanisms. In the sequel, we present conclusive 
results from TCP Reno interacting with Snoop versus TCP protocols Vegas, TCPW+ and Real (Fig. 
5), all of which are able to change the sending rate adaptively, although in a different fashion. Both 
TCPW+ and TCP-Real address the distinct characteristics of time-sensitive traffic and are implied to 
yield remarkable efficiency on real-time delivery over a wide range of network and session dynamics. 

Fig. 5a illustrates that the combination of TCP Reno and Snoop achieves the highest bandwidth 
utilization. In comparison with the rest of the protocols, Reno and Snoop exhibit the most effective 
responses to wireless errors, preventing TCP from unnecessary fast retransmissions and congestion 
control invocations. Consequently, local error control composes the most prominent approach towards 
bandwidth allocation over wireless links, since it manages to alleviate most of the impairments 
induced by wireless errors (Fig. 5d). However, the bottleneck link still remains underutilized, since the 
transient errors do not let the sending window inflate to higher values.  

Both TCP Vegas and TCP-Real achieve remarkable goodput rates, although Vegas is not designed 
for wireless environments, since it is not able to detect the nature of error. On the contrary, Fig. 5a 
depicts a deficiency of TCPW+, especially during increased contention. The protocol does not 
inherently support error classification invoking congestion-oriented responses to wireless errors. In 
addition, despite the improvements over the initial version of Westwood, TCPW+’s algorithm still 
does not obtain accurate estimates in heterogeneous environments, failing to achieve adequate 
utilization of the available bandwidth. 

A comparative view in the results of Figs. 5a and 5b reveals that high goodput rates do not 
necessitate improved performance on real-time delivery. Hence, the superior performance of Reno and 
Snoop in terms of bandwidth utilization is not met in the real-time performance results (Fig. 5b). 
Although Snoop appears to deal effectively with link errors, it is responsible for excessive delays (Fig. 
5c), which degrade performance. Local error control has the disadvantage of adding extra queuing and 
processing delays, which eventually impair the perceived quality of the real-time stream. Furthermore, 
local retransmissions introduce variation in RTTs and are responsible for varying gaps in the receiving 
rate. 

TCP Vegas and TCP-Real combine effective bandwidth utilization with an acceptable amount of 
delayed packets (Fig. 5c) achieving more efficient QoS provisioning for time-sensitive applications 
(Fig. 5b). Their congestion avoidance mechanisms enable both protocols to adapt to the vagaries of the 
network and eventually deliver a smooth real-time flow. TCP-Real in particular exploits its 
mechanisms which smooth transmission gaps and confine short-term oscillations in the sending rate. 
On the contrary, as we reported TCPW+ suffers from bandwidth utilization problems with a direct 
impact on real-time delivery (Fig. 5b). However, for high link-multiplexing each connection has 
limited bandwidth to allocate and thus, TCPW+’s bandwidth underutilization issue is not critical. In 
this situation, its real-time performance is not confined. Finally, Fig. 5e depicts that TCPW+ and in 
part Vegas can not handle bandwidths sharing efficiently; for both protocols the competing 
connections converge to different cwnd values, and therefore achieve different flow throughput rates. 
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                         (c) Delayed Packets Rate                                                                (d) Packet Loss Rate 

 

 
     (e) Fairness Index 

 

Figure 5 Protocol and Real-Time Performance 

5.3 Real-Time Delivery vs. Packet Error Rates 

In the last scenario, we performed the experiments using diverse packet error rates (PER: 0.01 - 
0.05). We also carried out the same experiment without link errors and used it as a reference. Our 



 

 

P. Papadimitriou and V. Tsaoussidis     341

objective is to demonstrate the impact of diverse packet error rates on bandwidth utilization and 
primarily on real-time delivery (Figs. 6, 7).  

According to our expectations, the corresponding results illustrate TCP’s performance degradation 
in the event of increasing link errors. Reno in conjunction with Snoop is less sensitive to the diverse 
packet error rates, due to the extended reliability provided by Snoop. Local error control is able to 
mask the worst effects of the high and dynamic error rates often found in wireless networks. The 
supportive role of Snoop is more effective, as link errors increase across the wireless channel. Similar 
to Reno/Snoop, Vegas exhibits minor implications in the event of increasing wireless errors. On the 
contrary, TCP-Real and TCPW+ demonstrate limited efficiency at relatively high packet error rates 
(PER: 0.04, 0.05). However, the performance of TCP-Real is notably improved when contention is 
increased (i.e. 20 flows). 

  
                               (a) System Goodput                                                 (b) Average Real-Time Performance 

 

Figure 6 Impact of diverse error rates (10 flows) 

  
                              (a) System Goodput                                                       (b) Average Real-Time Performance 

 

Figure 7 Impact of diverse error rates (20 flows) 
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6. Conclusions and Future Work 

We investigated the effect of local error control on real-time transport, motivating by the remarkable 
feasibility of wireless link protocols in terms of wide range deployment. We showed both analytically 
and experimentally that local retransmissions can deliver considerable improvements on TCP 
performance over lossy wireless links, by allowing the protocol to use a higher fraction of the available 
bandwidth. However, cashing incoming packets at link-layer buffers may introduce arbitrary delays 
that cause perceptible variations in RTTs and disturbing fluctuations in the receiving rate. We 
demonstrated that local error control degrades the performance on real-time delivery in a wide range of 
network dynamics and regardless of the TCP variant. Although local retransmissions should be 
persistent enough to virtually eliminate non-congestive losses, delay-sensitive traffic certainly requires 
local recovery of reduced-persistence. Furthermore, RTO should be substantially longer that the 
wireless-hop RTT in order to avoid unnecessary timeouts and false triggering of end-to-end congestion 
control invocations.  

The comparison of Reno/Snoop with selected end-to-end proposals reveals the disability of local 
error control to achieve perceptible gains in terms of real-time delivery. Our results show that real-time 
performance gains are eventually attained by end-to-end mechanisms that explicitly address time-
sensitive traffic, such as TCP-Real. The specific protocol achieves remarkable performance for highly 
multiplexed heterogeneous networks. We also identified the efficiency of TCP Vegas, although the 
protocol does not achieve a fair behavior. In summary, most of the end-to-end solutions we tested 
achieve effective QoS provisioning for time-sensitive applications. Their performance deteriorates 
only over highly error-prone links (i.e. PER > 0.03), where flow characteristics do not follow a 
prescribed and static behavior. In such error environments, local error control composes a more 
attractive approach. Future work includes the design of a cross-layer scalable scheme that will exploit 
information from the link-layer in order to utilize wireless resources more effectively. Such an 
approach is intended to support a variety of multimedia applications with a broad range of QoS 
requirements over heterogeneous wired/wireless networks. 
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