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Abstract  
 
We start off with an analysis on the effect of queuing delay on throughput. Departing from there, we claim that 
RTT alone is a better estimator than throughput. We investigate the potential of RTT-based metrics to approach 
the bottleneck queue behavior from TCP and we characterize the accuracy of our estimation. 
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1. Introduction 
 
End-to-end congestion avoidance and control as well as fair network resource management 
would have great benefit, had the TCP sender known the behavior of the bottleneck queue. 
Several methodologies have been developed to estimate bandwidth and bottleneck queue 
based on temporary measurements of throughput, inter-packet gap, or RTT.  For example, 
TFRC [Handley, M., Floyd et al. (2003)] calculates throughput via a throughput equation that 
incorporates the loss event rate, round-trip time and packet size. TCP-Vegas [L. Brakmo and 
L. Peterson (1995)] estimates the level of congestion using throughput-based measurements. 
TCP-Vegas demonstrates that measurement-based window adjustments is a viable 
mechanism, however, the corresponding estimators can be improved. In TCP-Westwood [C. 
Casetti, M. Gerla et al. (2002)], the sender continuously measures the effective bandwidth 
used by monitoring the rate of returned ACKs. TCP-Real [V. Tsaoussidis and C. Zhang 
(2002)] uses wave patterns: a wave consists of a number of fixed-sized data segments sent 
back-to-back, matching the inherent characteristic of TCP to send packets back-to-back. The 
protocol computes the data-receiving rate of a wave, which reflects the level of contention at 
the bottleneck link. Bimodal congestion avoidance and control mechanism [P. C. Attie, A. 
Lahanas et al. (2003)] computes the fair-share of the total bandwidth that should be allocated 
for each flow, at any point, during the system’s execution. TCP-Jersey [K.Xu, Y.Tian et al. 
(2004)] operates based on an “available bandwidth” estimator to optimize the window size 
when network congestion is detected. The Packet-Pair technique [S. Keshav (1991)] estimates 
the end-to-end capacity of a path using the difference in the arrival times of two packets of the 
same size traveling from the same source to the same destination. Recently, several 
investigations have been also carried out regarding the accuracy of the proposed estimators, 
like [M. Jain and C. Dovrolis (2004)]. 

 
Initially, we do not attempt to introduce a new estimator but rather to characterize how 
accurately TCP estimators can approach the queue behavior during communication.  We 



discuss pitfalls of throughput estimation and we emphasize further on behavior-estimation 
methodologies based on RTT measurements. We attempt to address the following issues: 
- Can TCP sender detect flow synchronization? Synchronized flows do not allow for end-to-
end detection of queue size for all participating flows. We estimate packet position per flow. 
We note that the prescribed behavior of TCP sources leads to a prescribed packet position in 
the queue when synchronization is present, depending on the number of participating flows in 
the system. 
- Can we estimate accurately the queue behavior in the absence of synchronization? When the 
participating flows utilize large windows and packets are presumably (due to lack of 
synchronization) interleaved, the max-packet-delay per window may give sufficient feedback 
on the current queuing delay.  
- Does the accuracy depend on the window size and the scale of packet interleaving? When 
the number of participating flows increases, windows are becoming smaller and samples do 
not suffice to select a value for max-packet-delay which is close to the real queuing delay. 
Sampling technique needs then to be adjusted to a predetermined number of packets. The 
more we increase the sample, the better accuracy we achieve but the less responsive a 
protocol can be due to further abstracting of the sampling scale. 
 
2. Throughput vs RTT 
 
First we extend the analysis model of [D.-M. Chiu and R. Jain (1989)] by taking into account 
the role of bottleneck queue. Consider a simple network topology shown in figure 1, in which 
the link bandwidth and propagation delay are labeled. In our scheme, n TCP flows share a 
bottleneck link with capacity of bw, and the round trip propagation delay is RTT0 = 2 * 
(src_delay + delay + sink_delay). Since our focus in this subsection is on the overall system 
behavior, we define the aggregated congestion window size at time t as: 
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where cwndi(t) is the window size of the ith flow. Consequently, the system throughput at time 
t can be given by the following equation: 
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where qdelay(t) is the queuing delay at the bottleneck router. As can be seen from (2), the 
throughput is not only a function of the congestion window, but also a function of the queuing 
delay, which was not incorporated into the analyses in [D.-M. Chiu and R. Jain (1989), J. 
Padhye, V. Firoiu et al.  (1998)].  

Assume all flows are in the additive increase stage. First consider the case where cwnd(t) is 
below the point knee [D.-M. Chiu and R. Jain (1989)]: 

bwRTTcwndknee ⋅= 0
    (3) 

Then there is no steady queue build-up1 in R1 (i.e. RTT(t) = RTT0), and according to (2), the 
throughput grows in proportion to cwnd. The bottleneck capacity is not fully utilized until 
cwnd increases to cwndknee. 

                                                           
1 There could be temporary queue build-up in this scenario, due to the traffic burstiness. This is neglected to 
simplify our analysis.    



If cwnd(t) increases further beyond cwndknee, however, the system displays different 
dynamics. The bottleneck queue starts to build up, after the bottleneck capacity is saturated. 
Rewrite cwnd(t) as: 
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Since the bottleneck link can transmit at most cwndknee packets in one RTT0 (see (3)), )(tw∆  
packets will linger in the queue. Hence the steady queuing delay at the bottleneck will be: 

bwtwtqdelay /)()( ∆=      (5) 

Intuitively, the system throughput is bounded by the physical capacity bw, in spite of the 
increase of cwnd(t) beyond the knee, because qdelay(t) in the denominator of (2) grows as 
well.  This is confirmed by the following computation: 
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The system dynamics can be continuously described by equations (4) – (6), until the queue 
length )(tw∆ reaches the maximum buffer size, i.e. when cwnd touches the point cliff 2 

bwqdelayRTTcwndcliff ⋅+= )max( 0
   (7) 

TCP senders then multiplicatively decrease their congestion window, after packet losses due 
to buffer overflow are detected. 

Although the above analysis is based on a simplified model, it provides useful insights into 
the dynamics of congestion control, and a guideline for protocol improvement. Such 
guidelines can be found in [V. Tsaoussidis and C. Zhang (2005)]. The computation of (6) 
demonstrates that increasing cwnd beyond the knee does not enhance further the system 
throughput, but only results in increasing queuing delay. Can we use throughput to monitor 
network conditions? One can detect, perhaps, the knee threshold. Experience with TCP-Vegas 
has shown that the level of flow throughput at the time the threshold was crossed cannot be 
uniformly detected by all flows. Therefore, adjustments based on this information may lead to 
unfair bandwidth sharing. However, while estimators using throughput for measuring 
congestion may fail, estimators based on the RTT measurements could provide more accurate 
indication of the network condition. 

3. ESTIMATING BOTTLENECK QUEUE SIZE 
 

We focus on the estimation of the bottleneck queue size at the sender. We claim that using an 
appropriate RTT-based mechanism, the sender can measure with sufficient accuracy at what 
percentage the bottleneck queue is full. Such information may enhance the sophistication of 
the transport protocol regarding: 

- the detection and avoidance of  flow synchronization. 
- its capability to distinguish congestive from non-congestive errors. 
- its flexibility to implement a corresponding back-off or keep-on strategy, when the 
queue is getting full or remains unexploited, accordingly.  
- the possibility to apply an adaptive scheme relevant to the detected network conditions. 

                                                           
2 The intuitive concept of knee and cliff was first introduced in [D.-M. Chiu and R. Jain (1989)].  Here we give 
an analytical expression. 



 
Our analysis on RTT-based estimation of queue behavior departs from a three-case 
categorization of network-traffic. Our main target is to investigate if, how and when specific 
packet-RTT measurements could correspond to the level of queuing delay experienced in the 
system. Maximum queuing delay corresponds to the max queue length. Naturally, our 
categorizing criterion is statistically oriented: What is the level of packet interleaving in the 
system? Increased interleaving leads to higher probability of experiencing max delay by all 
participating streams. On the contrary, synchronization leads to wrong estimation of max 
queuing delay. For example, a flow can have always its packets in the start of the queue and 
consequently follow a wrong estimation of an empty queue. We claim that this situation can 
be predicted when packet position in the queue follows the pattern of TCP window 
adjustments. That is, the expected position under conditions of flow synchronization would be 
a certain position in the queue. Given the window increase strategy of TCP, the expected 
position would follow a corresponding increase as well.  

 
We examine different sampling techniques for measuring RTT. We show that measuring 
every RTT (ERTT) to estimate the queue dynamics may fail when synchronization exists; 
however, synchronization itself can be occasionally detected. Window-based sampling 
(WRTT) of largest RTT fails for small windows; and a predetermined number of packets 
works only when the link is fully utilized.  

 
Otherwise, when there are periods of unutilized queue, a technique based on measuring 
MaxRTT for a predetermined number of packets (PRTT) may fail.  In conclusion, our 
sampling methodology corresponds to three types of congestion: (i) persistent congestion 
where packets are interleaved, (ii) transient congestion with small windows and synchronized 
flows and (iii) transient congestion with unsynchronized flows. 
 
Our estimators are currently based on the following assumptions: 

- When sample RTT reaches maximum RTT, we assume that the bottleneck’s buffer is 
full (when the measured maxRTT is taken out of a sufficient sample3).  

- Similarly, when sample RTT approaches the minimum RTT, we assume that the 
bottleneck’s buffer is Empty. 

 
We introduce initially the Occupied Queue Size (OQS) index. The OQS index records the 
fraction of the bottleneck queue, which is full, based on the current packet position4 in the 
queue: 
 
OQS = (Sample_RTT – MinRTT) / (MaxRTT – MinRTT) 
 
The OQS index gets values between 0 and 1 since minRTT<maxRTT if the number of packets 
per window n >1, packets following the same route.  
When OQS gets the value 0, we estimate an empty buffer (sample RTT=MinRTT). Similarly, 
OQS=1 indicates a full buffer (sample RTT=MaxRTT) and hence 
OQS=EstimatedQueueLength. 
For the sake of the experiments, when the bottleneck-queue length is known, we use the 
following metric: 
                                                           
3 We investigate here what is a sufficient sample. 
4 For which the RTT has been measured 



 
PP= Estimated_Queue_Length x (Sample_RTT – MinRTT) / (MaxRTT – MinRTT) => 
 

PP= EQL x OQS  
 
The Packet Position (PP) metric is therefore the product of the OQS index and the bottleneck-
queue’s length. The PP metric reveals the position of the last acknowledged packet in the 
bottleneck queue. We use this metric in contrast to the real position of the packet, in order to 
initially evaluate our estimator. However, we note that the estimated packet position is always 
equal to or less than the real packet position. We also estimate the mean and maximum 
deviation from the real position, categorizing the distinctive effects of different scenarios to 
deviation.  
 
4. EXPERIMENTAL METHODOLOGY 
 
4.1 Evaluation Plan 

 
We have implemented our evaluation plan on the ns-2 network simulator. The network 
topology used as a test-bed is the typical single-bottleneck dumbbell, as shown in Figure. 1. 
The link's capacity at the receivers (bw_3) is 1Mbps. We used equal number of source and 
sink nodes. The simulation time was fixed at 60 seconds, a time-period deemed appropriate to 
allow protocols to exploit their dynamics. 
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Figure 1. Simulation topology 

 
In our scenarios, ftp flows are entering the system within the first two seconds. All flows are 
fixed, during the rest 58 seconds.  
 

 Bw_1 Bw_2 Bw_3 
Scenario 1 1 Mbps 100 Mbps 1 Mbps 
Scenario 2 100 Mbps 10 Mbps 1 Mbps 

 
Table 1.  Experiments 

 
We carried out experiments using the above two scenarios (Table 1). We adjusted values for 
Bw_1, Bw_2 in order to move the bottleneck in different queues (queue 3 or queue 1).  We 
traced all the packets of the last flow (the 10th) and record all the positions they got in all 
available queues. We use these results for the evaluation of the OQS and PP estimators. All 
queues have 50 packets length.  
 
In order to evaluate how efficiently our mechanisms can work, we have also experimented 
with dynamic scenarios with graduated contention increase/decrease and different queuing 



algorithms (like RED [S. Floyd, and V. Jacobson (1993)]). The results were similar with the 
ones reported. 
 
5. EVALUATION RESULTS  
 
5.1 Scenario 1 (bw_1=1 MBps, bw_2=100Mbps) 
 
In the following figure (figure 2), we observe the behavior of the three queues in contrast to 
our estimation mechanism. In this experiment, we measure every RTT (ERTT sampling). We 
show that this estimation mechanism works very well, under the given network conditions. In 
fact, the estimation mechanism follows queue 3. In figure 3, we show the per-flow mean and 
max deviation of our estimation to the actual position of the packets. Consequently, we show 
that our estimation works effectively by the viewpoint of all ten flows. We got similar results 
using a RED queue. 

 
Figure 2. DropTail Queue 

 

 
Figure 3. Maximum & Mean Deviation 

 

 
Figure 4. RED Queue 



 
5.2 Scenario 2 (bw_1=100 MBps, bw_2=10Mbps) 
 
When we used a first link of 100Mbps and a second of 10Mbps, we noticed that our 
estimation follows the first queue (using both DropTail and RED – Figures 5, 7). The mean 
deviation of our estimation (figure 6) is under five packets. The scenario with graduate 
contention decrease (figure 8) points out that the measurement gets refined with less number 
of flows. 

 
Figure 5. DropTail Queue 

 

 
Figure 6. Maximum & Mean Deviation 

 
 

 
Figure 7. RED Queue 



 
Figure 8. DropTail Queue with Contention Decrease  

 
 
6.  CONCLUSIONS & ONGOING WORK 
 

We investigated the capability of different estimators to discover the bottleneck queue 
behavior. We conclude that RTT-based estimators occasionally fail to capture the queue 
dynamics. Depending on the conditions, one estimator may outperform another. The results 
call for a new design where the estimator adapts its strategy to detected network conditions. 
We intent to graft such an estimator to TCP sender.  
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