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Abstract

We evaluate a new approach to service differentiation,
based on distinguishing congestive and non-congestive
data. We initially define as non-congestive data only
minimal-size packets, which do not contribute to conges-
tion themselves, but, however, do suffer delays caused by
larger packets. Case examples of such data are typical sen-
sor data. Non-Congestive Queuing (NCQ) needs not fol-
low a state-full approach to traffic differentiation. We show
that (i) non - congestive data gets a much better service
from the network, (ii) congestive data suffers no extra de-
lays; instead, both fairness and efficiency are occasionally
improved due to lower contention. Having more flows fin-
ishing early may lead to better resource sharing.

1 Introduction

Typical scheduling paradigms of packet networks do
not match well the requirements of non-congestive applica-
tions, which transmit minor data volumes but suffer, how-
ever, major queuing delays. Sensor applications are some
recent examples that demand a new type of service differ-
entiation. Such applications do not really cause significant
delays, raising naturally the issue of whether they deserve a
prioritized service or not. For example, a sensor-generated
packet may experience zero delay favored by a prioritized
scheduling scheme, at a zero cost to other congestive flows.
We attempt to exploit this idea in the context of computer
networks, and in terms of correctness and practicality. We
introduce a new paradigm for service differentiation, based
on the principle of packet contribution to queuing delay.
That is, we distinguish two traffic classes, congestive and
non-congestive; non-congestive traffic gets prioritized ser-
vice for two reasons: first, a non-congestive flow does not
cause significant delay and hence needs not suffer from de-
lays. Second, since it does not cause delays its service

time should eventually have little impact on other flows and
therefore, it may well get service first. The whole issue
therefore is essentially turned down to exploiting the trade-
off itself. How much is the benefit for the non-congestive
applications and how much is the cost for the congestive
ones?

Our primary assumption is that non-congestive traffic is
generated in the form of small and periodic packet trans-
mission. Certainly, typical sensor applications do fall into
that category; however, other applications may fall into this
category as well, if we judge solely on the basis of packet
length. We discuss this issue later in this paper. However,
the concept of service differentiation based on congestive
and non-congestive data is powerful indeed: no flow states
are required and no packet marking either.

Although the idea sounds straightforward, the system
properties and design details reveal interesting dynamics.
We first show with simple scenarios that the benefit for
non-congestive flows is impressive. In terms of system ser-
vice, this is translated into increased user satisfaction due to
the increased amount of applications finishing much earlier.
Notably, system performance is not degraded. Total time
of applications system-wide is decreased. Furthermore, the
gained performance of non-congestive flows is not always
counterbalanced by a corresponding performance loss of
congestive flows.

Although the proposed algorithm is still in experimen-
tal phase we do provide feedback on several issues: What
amount of traffic should get prioritized service? Is there a
performance loss when no congestive flows exist? Is there
a loss when no non-congestive flows exist? However, more
details need to be parameterized and evaluated and further
analysis is on the works. At this stage of research, our
results clearly indicate the applicability of non-congestive
queuing (NCQ) for packet networks.

In section 2 we discuss the related work and detail our
proposal. In section 3, we provide the pseudo-code of NCQ
and present the basic assumptions, fundamental concepts
and projected outcome. In section 4 we discuss the evalua-



tion plan and metrics along with a justification for the plan.
Furthermore, we present the results, analysis and justifica-
tion. We show the impact of the percentage of packets that
get prioritized service on system performance. In section 5
we discuss several open issues and address reasonable con-
cerns. In section 6 we summarize our conclusions and fu-
ture work.

2 Related Work

Service differentiation in computer networks is a topic of
research, mainly focused on supporting application require-
ments for delay and bandwidth. Differentiation is mainly
an operation that deals with reallocating bandwidth and
controlling delay for the benefit of strict-service-requiring
applications and at the cost of more flexible applications.
Therefore, service differentiation is based on the principle
’get better service - if you need better service’.

Internet service differentiation has not been designed on
the basis of theoretical research; rather, it was driven by
the need for supporting real-time multimedia applications
over the Internet. Such applications do have strict band-
width and delay requirements; the flows that generate can
describe their specifications in broad or detailed terms, and
the network can plan for guaranteed service or otherwise
for somewhat better service. Two approaches have gained
acceptance recently: According to diffserv [1], the inher-
ent properties of packet-switched Internet are masked with
a number of gentle mechanisms, naturally matching Inter-
net’s structure, which - one way or another - shape traffic
at some functionally-enhanced nodes. Alternatively, with
intserv [2] the architecture itself can be redesigned to allow
for guarantees through signaling and reservation.

Differentiation in both the aforementioned cases is
application-specific and naturally oriented either by some
explicit and strict flow characteristics or by some applica-
tion class. Even in the latter case, associating application
types with service classes requires a rather sophisticated
implementation, ranging from packet marking, to shaping,
scheduling and dropping schemes. Perhaps network engi-
neering would have been different had the pressing demand
of application requirements been ignored. For example, a
natural principle to lead the design of network services (and
consequently the service differentiation policy) could have
been the network ability to function, the number of users
serviced better without damaging the rest, or the service of-
fered on the basis of the cost to other applications. It is not
unnatural to service first applications that require minimal
time for service; in that case the gain for such applications
can be significant, while the cost for the other applications
may be small.

A similar scheduling discipline has been studied in oper-
ating systems where some schedulers select processes based

on their completion time, rather than the time they started
(shortest job first). Such a service alone may lead to star-
vation in case the rate of small processes is sufficient to
keep the processor busy; processes demanding more time
for completion could never get their turn. However, due to
the cost of context switch and the limited concurrent pres-
ence of processes, this domain had limited scheduling flex-
ibility; our service differentiation scheme should guarantee
not only better service for non-congestive data but also a
non-degraded service to congestive applications. Thus, only
a limited amount of non-congestive data should be able to
benefit from the differentiated service; once the cost of bet-
ter service to some flows impacts the service to other flows,
service differentiation should terminate.

A lot has been done in the networking community
aiming at controlling traffic based on its characteristics.
Controlling is implemented either through scheduling or
through dropping policies mainly aiming at penalizing high
- bandwidth - demanding flows rather than favoring low -
bandwidth - demanding flows. In [5] Floyd and Fall in-
troduced mechanisms based on the identification of high-
bandwidth flows from the drop-history of RED. The RED-
PD algorithm (RED with Preferential Dropping) [7] uses
per-flow preferential dropping mechanisms. Two other ap-
proaches that use per-flow preferential dropping with FIFO
scheduling are Core-Stateless Fair queuing (CSFQ) [12]
and Flow Random Early Detection (FRED) [6]. CSFQ
marks packets with an estimate of their current sending
rate. The router uses this information in conjuction with
the flow’s fair share estimation in order to decide whether a
packets needs to be dropped. FRED does maintain a state
although only for the flows which have packets in the queue.
The flows with many buffered packets are having an in-
creased dropping propability.

The CHOKe mechanism [10] matches every incoming
packet against a random packet in the queue. If they be-
long to the same flow, both packets are dropped. Otherwise,
the incoming packet is admitted with a certain propabil-
ity. However, a high-bandwidth flow may have only a few
packets in the queue. Authors of [9] continued the CSFQ
and CHOKe approaches. Their proposed mechanism keeps
a sample of arriving traffic. A flow with several packets
in the sample, has an increased dropping probability. The
Stochastic Fair Blue (SFB) [4] uses multiple levels of hash-
ing in order to identify high-bandwidth flows. As the au-
thors state, their mechanism works well only with a few
high-bandwidth flows. Anjum and Tassiulas proposed in
[3] a mechanism that drops packets based on the buffer oc-
cupancy of the flow while ERUF [11] uses source quench to
have undeliverable packets dropped at the edge routers. On
the other hand, SRED [8] caches the recent flows in order
to determine the high-bandwidth flows.



3 Non-Congestive Queueing

NCQ is based on the principle ’Less Impact - Better Ser-
vice’ (LIBS). Although one can generalize the perspective
to apply to all incoming packets, we only deal with two
classes of packets: very small packets, deterministically set
to 100 bytes and long packets that typical Internet appli-
cations use for data transfers. A natural question there-
fore is what if small-packet rate reaches levels, which de-
lay significantly long-packet transmission. We complement
the differentiating scheme with a service threshold: Non-
congestive traffic cannot exceed a predeterminedncqthresh
percentage of prioritized service. We investigate the impact
of ncqthreshin the result section. NCQ uses priority queu-
ing to implement priority service. That is, with in the same
buffer, each packet is checked for its length, contrasted to
a current priority rate and gets priority whenever it satisfies
two conditions: (i) length is below 100 bytes and (ii) prior-
ity rate is belowncqthresh.

The algorithm below shows the pseudo-code for NCQ:

For every received packet
Begin

Count received packets
(congestive and non-congestive)
if (packetLength<100)

and
(non-congestive packets /

received packets < ncqthresh)
then

packet gets high priority
else

packet gets normal priority
end

End

Clearly, applications that utilize small packet transfers
at high rate may benefit from NCQ. As soon as the rate of
priority reachesncqthresh, no further prioritized service is
allowed.

On the other hand, a typical application could be trans-
formed into a small-packet application intentionally. Since
the amount of gain is limited by thencqthreshand the
packet length, the transform should cause that much over-
head and extended communication time that naturally the
penalty of transformation will be greater than the gain.

4 Impact of NCQ

Initially we attempt to approach numerically the impact
of NCQ priority on congestive traffic for any given propor-
tion of traffic classes. We assume two classes of traffic (with
Poisson arrival distribution). Class 1 is the non-congestive

traffic and the class 2 the congestive. Class 1 has priority
over class 2. We use a non-preemptive head-of-line prior-
ity system. The class 1 has smaller packets (and average
service-time) and lower arrival rate.

We use the following notation:

Notation Description
λ1 = ak arrival rate of Class 1
λ2 = k arrival rate of Class 2

TS1 = br average service-time of Class 1
TS2 = r average service-time of Class 2

λ = λ1 + λ2 total arrival rate
u1 = λ1TS1 utilization of Class 1

u2 = λ1TS1 + λ2TS2 cumulative utilization
TQ1 queuing delay for Class 1
TQ2 queuing delay for Class2
TQ average queuing delay

According to our model the total queuing delay per
packet has two components: the waiting time and the ser-
vice time.

Scenario 1: Priority Scheduling

We calculate the average waiting time for each of the two
classes as:

TW1 =
λ1T

2
s1 + λ2T

2
s2

2(1− u1)
(1)

TW2 =
λ1T

2
s1 + λ2T

2
s2

2(1− u1)(1− u2)
(2)

Consequently, the total average waiting time is the aver-
age ofTW1, TW1 weighted by the arrival rate for each class.

TW = total average wait= λ1
λ TW1 + λ2

λ TW2

We apply this to each class and we calculate afterwards
the weighted average in order to get the total average time-
in-system:

TQ1 = TW1 + TS1 (3)

TQ2 = TW2 + TS2 (4)

TQ =
λ1

λ
TQ1 +

λ2

λ
TQ2 (5)

From equations (3), (4), (5) we get:

TQ = k(2−kr+a3b3k2r2+a2bkr(−kr+3b(−1+kr))
2(1+a)(−1+abkr)(−1+k(r+abr))

+a(b2kr+kr(1−kr)+2b(1−3kr+k2r2)))
2(1+a)(−1+abkr)(−1+k(r+abr))

Scenario 2: Non-Priority Scheduling



Without a priority queue, the two classes (non-
congestive and congestive) would have the same average
waiting time. In such a case, the network utilization of the
system is:

uwp = u1 = u2 = λ1TS1 + λ2TS2 (6)

Service time:

TSwp =
λ1

λ
TS1 +

λ2

λ
TS2 =

k(1 + ab)
1 + a

(7)

For the average waiting time:

TW1wp = TW2wp =
uwpTSwp

2(1− uwp)
(8)

For the average time-in-system:

TQ1wp = TW1wp + TS1 (9)

TQ2wp = TW2wp + TS2 (10)

From (9) and (10), we get:

TQwp = λ1
λ TQ1wp + λ2

λ TQ2wp

= (1+ab)k(−2+k(r+abr))
2(1+a)(−1+k(r+abr))

Figure 1. Numerical Results (5% non-
congestive)

In Figure 1, we present the results of a simple scenario.
The 5% of arriving packets form the non-congestive traffic
(class 1) and the 95% the congestive (class 2). The service
times are 0.5ms and 5ms for class 1 and class 2 respectively.
While the average time of congestive traffic and the total av-
erage time are not affected by the use of priority queuing,
the non-congestive traffic is significantly favored. When we
increase the rate of non-congestive packets to 25% (see Fig-
ure 2), there is an impact to the congestive traffic in high
utilizations (above 0.3).

Figure 2. Numerical Results (25% non-
congestive)

5 Evaluation

5.1 Evaluation Methodology

We have implemented our evaluation plan on the net-
work simulator ns-2. We attempt to address three specific
matters:

1. To show by simulation that numerical results do not
lack any important parameter. For that, we used a sim-
ple dumbbell topology as shown in figure 3

Figure 3. Simulation topology

and we measure:

Goodput =
Original Data

T ime

whereOriginal Data is the number of bytes deliv-
ered to the high-level protocol at the receiver (i.e. ex-
cluding retransmitted packets and overhead) andTime
is the amount of time required for the data delivery. We
used the system Goodput in order to measure the over-
all system efficiency. The system Goodput is defined
as:

SystemGoodput =
∑

(Goodputi)
n

whereGoodputi is the Goodput of theith flow andn
the flow number.



Furthermore, we experiment with variants of traffic
thresholds and traffic class proportions, to demonstrate
the overall system behavior when the ncq parameters
change.

2. To exploit the impact of non-congestive queuing on
time-sensitive, sensor-like data tranfers. For that, we
used again a simple dumbbell, running however CBR
traffic instead of ftp. In the same context, we mea-
sure performance using a real-time performance index,
which we call Application Success Index defined as:

ApplicationSuccessIndex = PacketsDeliveredinTime
PacketsDelivered

wherePacketsDeliveredinTime is the number
of packets which have been received by the application
in time andPacketsDelivered is the total number
of packets received by the application.

Additionally, we measure application efficiency and
user satisfaction based on theworst andaverage
task completion time as well as on the
number of completed tasks . Every conges-
tive FTP flow transmits 1Mb data and every non-
congestive FTP flow 100Kb. We regard as a task the
successful transmission of the carried data of a flow.

3. To exploit the potential applicability of NCQ on Gate-
ways. We used a complex topology (see figure 4),
where peripheral sources generate traffic to a specific
gateway, crossing the traffic generated by other sources
that follow a partially different path. The number of
flows now increases (up to 1000 flows) to capture the
circumstances of wider area network.

We analyze each scenario and corresponding results, in
turn.

Figure 4. Network topology with multiple bot-
tlenecks and cross traffic

5.2 Evaluation Results

In the following results we usedncqthresh0.05. The
non-congestive flows were the 5% of all flows (unless it is
stated otherwise).

5.2.1 Scenario 1: Non-Congestive FTP flows and
Dumbbell Topology

As we can see in Figure 5, the non-congestive flows have
significant performance gains (4.9 times - in case of 70
flows) in terms of Goodput. Although non-congestive traf-
fic is clearly favored by NCQ, we also notice occassionaly
better performance for the congestive flows too (Figure. 6).
This is not unreasonable: the impact of timeouts caused by
short packets is more significant for non-congestive flows
compared with the impact of long packets; i.e., regardless
of the packet length, timeout is the same and extending total
time for a small retransmission degrades system throughput.
It is very interesting to note that the NCQ has a positive im-
pact also in the system’s average / worst time (Figures 8,
9). According to Figure 9, all tasks are completed up to 11
seconds sooner (in case of 30 flows).

Flows
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Figure 5. System Goodput
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Figure 6. Average Goodput of Congestive
Flows

We have also varied the traffic proportion of congestive
and non-congestive flows. As the rate of the non-congestive
flows increases (i.e. the number of the non-congestive pack-
ets increases), the benefit for favored non-congestive pack-
ets scales down. This behavior is not symptomatic. In-
stead, thencqthresh value confines priority service for
guarantee small impact on congestive flows. For example,
we can see in Figure. 10 (rate of non-congestive packets
20%) that the NCQ algorithm favors only a small portion



Figure 7. Average Goodput of Non-
Congestive Flows

Figure 8. Average Time

Figure 9. Worst Time

of non-congestive packets. This reduces performance gains
and further, as the rate of non-congestive packets increases
(25% - Figure. 11), NCQ impact is almost cancelled.

As we can see from Figure 13, NCQ leads to increased
user satisfaction due to the increased number of applica-
tions finishing much earlier. Also, since flows are faced ear-
lier with less contention, they seem to be able to share the
channel better. However, this claim remains to be proven in
future work.

Impact of traffic threshold (ncqthresh)

We carried out the same experiment with different val-
ues ofncqthresh(0.01, 0.03, 0.05). As we can see from

Figure 10. Average Goodput of Non-
Congestive Flows (20% NC packets)

Figure 11. Average Time of Non-Congestive
Flows (20% NC packets)
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Figure 12. Average Goodput of Non-
Congestive Flows (25% NC packets)

Figure 14, in average, the value of 0.05 is a good choice.
Additionally, Figure 14 indicates that increasing further the
threshold does no guarantee better service. For example, in
Figure 14 flows withncqthresh0.03 finish earlier.

5.2.2 Scenario 2: Non-Congestive CBR flows

In this scenario, we used CBR non-congestive flows (in-
terval 0.1 sec, packet size 100 bytes). The non-congestive
flows seem to be unaware of the increasing level of con-
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Figure 13. Tasks Completed (for 50 flows)

Figure 14. Tasks Completed and Traffic Tresh-
old

tention (due to the congestive flows). The behavior of the
system in terms ofapplication success index
(Figures. 16, 17, 18) demonstrates the applicability of NCQ
for real-time applications (eg. time-sensitive periodic sen-
sor data). The performance gains in terms of goodput were
significant (Figure. 15).
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Figure 15. System Goodput

5.2.3 Scenario 3: Non-Congestive FTP flows and Com-
plex Topology

We used a complex network topology with multiple bottle-
necks and cross traffic (Figure. 4). Congestive flows form
the main traffic, while non-congestive flows form the cross

Figure 16. System’s Application Success In-
dex

Figure 17. Non-Congestive Flows’ Applica-
tion Success Index

Figure 18. Congestive Flows’ Application
Success Index

traffic. Figures 19, 20, 21 depict the behavior of the sys-
tem when the NCQ algorithm is used only in the gateway
router (router R3). The number of participating flows now
ranges from 100-1000 to reflect the different topology of a
wide-area network.

6 Open Issues

Although we demonstrated NCQ’s high potential, we do
not presently address all concerns necessary to justify its
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Figure 19. Average Goodput of All Flows
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Figure 20. Average Goodput of Congestive
Flows

Figure 21. Average Goodput of Non-
Congestive Flows

need for deployment. For example, a single application
which utilizes small-size packets for data transmission may
be congestive indeed. That means, such application will
probably monopolize the priority service for themselves.
We are working on an extension of the algorithm to assign
probabilistically priority service to small packets. The prob-
ability per packet decreases as the rate of non-congestive
packet exceeds thencqthresh. Probabilistic priority will
guarantee fairness among non-congestive flows in a simi-
lar fashion to RED’s probabilistic dropping. Alternatively,
the ncqthreshis dynamically adjusted, based on the pro-
jected outcome. In another front of research, acks and con-

trol packets may benefit from the priority treatment. Control
packets prioritization are expected to boost the performance
of short-lived flows (mice) increasing fairness compared to
long-lived flows (elephants). Acks are expected to increase
transmission rate; how far this can happen (considering also
the delayed-ack scheme which is widely deployed) and how
far it can impact congestion control is an open issue.

7 Conclusions

We have shown that NCQ is a simple but powerful tool
for differentiation, particularly beneficial for applications
that utilize small rates and short packets, such as typical
sensor applications. We discovered that a limited prioriti-
zation has a dual impact: it benefits non-congestive flows
significantly and reduces contention among the congestive
flows, resulting occasionally in better delays and through-
put for all applications. NCQ is still in experimental phase.
Further analytical and experimental results with more so-
phisticated mechanisms are underway.
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